递归练习:错排问题

简介: /*====================================================================== 某人写了n封信和n个信封,如果所有的信都装错了信封。
/*======================================================================
某人写了n封信和n个信封,如果所有的信都装错了信封。
求所有的信都装错信封共有多少种不同情况?

分析:
这个涉及到组合数学里面的错排问题。先看下面的例题。
组合学中有这样一个问题:某人给五个朋友写信,邀请他们来家中聚会。请柬和信封交由助手去处理。
粗心的助手却把请柬全装错了信封。请问:助手会有多少种装错的可能呢?
这个问题是是由当时有名的数学家约翰·伯努利(Johann Bernoulli,1667—1748)的儿子
丹尼尔·伯努利(Danid Bernoulli,17OO一1782)提出来的。
瑞士著名数学家欧拉按一般情况给出了一个递推公式:
D(n) = (n-1) [D(n-2) + D(n-1)]
特殊地,D(1) = 0, D(2) = 1.
例题:
    用A、B、C……表示写着n位友人名字的信封a、b、c……表示n份相应的写好的信纸。把错装的总数为记作D(n)。假设把a错装进B里了,包含着这个错误的一切错装法分两类:
(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有D(n-2)种错装法。    
(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的)n-1份信纸b、c……装入(除B以外的)n-1个信封A、C……,显然这时装错的方法有D(n-1)种。
总之在a装入B的错误之下,共有错装法D(n-2)+D(n-1)种。
a装入C,装入D……的n-2种错误之下,同样都有D(n-1)+D(n-2)种错装法,因此D(n)=(n-1)[D(n-1)+D(n-2)]
  这是递推公式,令n=1、2、3、4、5逐个推算就能解答蒙摩的问题。
    D(1)=0,D(2)=1,D(3)=2,D(4)=9,D(5)=44
答案是44种。

参见:http://www.cnblogs.com/huashanqingzhu/p/3524551.html 
========================================================================*/
 
 1 #include<stdio.h>
 2 int D(int n);
 3 int main()
 4 {
 5     int n;
 6     scanf("%d",&n);
 7     printf("%d",D(n));
 8     return 0;
 9 }
10 int D(int n)
11 {
12     if(n==1)
13     {
14         return 0;
15     }
16     else if(n==2)
17     {
18         return 1;
19     }
20     else 
21     {
22         return (n-1)*(D(n-2) + D(n-1));
23     }
24 }
View Code

 

其实,像类似菲波纳吉数列这种双线递归(可以画出类似二叉树这样的递归树),会有许多重复计算的地方。

比如,计算D(i)=D(i-1)+D(i-2),其实可能D(i-1)和D(i-2)在前面或者后面都还有要用到的地方。

所以,为了避免出现重复计算,可以考虑把每一个D(i)的值保存到数组当中,要计算时直接先查表,查不到再考虑递归计算。(这个就是所谓的记忆搜索了吧)

 当然,能不用递归的最好不用递归来做这种事情。

 

 

 

相关文章
|
8月前
|
算法
【递归搜索回溯专栏】专题二:二叉树中的深搜----求根节点到叶节点数字之和
【递归搜索回溯专栏】专题二:二叉树中的深搜----求根节点到叶节点数字之和
50 0
|
5月前
|
算法
【算法】递归、搜索与回溯——汉诺塔
【算法】递归、搜索与回溯——汉诺塔
【图论】【深度优先搜索】【换根法】2858. 可以到达每一个节点的最少边反转次数
【图论】【深度优先搜索】【换根法】2858. 可以到达每一个节点的最少边反转次数
|
8月前
|
机器学习/深度学习 算法 搜索推荐
第四十五练 请以递归方式实现斐波那契数列的第 n 项
第四十五练 请以递归方式实现斐波那契数列的第 n 项
61 1
|
8月前
|
算法
每日一题——排序链表(递归 + 迭代)
每日一题——排序链表(递归 + 迭代)
|
算法
代码随想录算法训练营第十八天 | 力扣 513. 找树左下角的值、112. 路径总和、113. 路径总和 II、106. 从中序与后序遍历序列构造二叉树、105. 从前序与中序遍历序列构造二叉树
代码随想录算法训练营第十八天 | 力扣 513. 找树左下角的值、112. 路径总和、113. 路径总和 II、106. 从中序与后序遍历序列构造二叉树、105. 从前序与中序遍历序列构造二叉树
59 0
|
存储 算法
算法训练Day18|● 513.找树左下角的值● 112. 路径总和 113.路径总和ii● 106.从中序与后序遍历序列构造二叉树 105.从前序与中序遍历序列构造二叉树
算法训练Day18|● 513.找树左下角的值● 112. 路径总和 113.路径总和ii● 106.从中序与后序遍历序列构造二叉树 105.从前序与中序遍历序列构造二叉树
|
机器学习/深度学习 缓存 机器人
从暴力递归到动态规划(2)小乖,你也在为转移方程而烦恼吗?
从暴力递归到动态规划(2)小乖,你也在为转移方程而烦恼吗?
|
机器学习/深度学习 算法
算法刷题第十天:递归 / 回溯--1
时间复杂度:O(n+m),其中 n 和 m 分别为两个链表的长度。因为每次循环迭代中,l1 和 l2 只有一个元素会被放进合并链表中, 因此 while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O(n+m)。
97 0
算法刷题第十天:递归 / 回溯--1
|
算法
算法刷题第十一天:递归 / 回溯--2
算法刷题第十一天:递归 / 回溯--2
65 0
算法刷题第十一天:递归 / 回溯--2