集合的划分【转】

简介: 【文章来源:http://www.cnblogs.com/dolphin0520/archive/2011/07/12/2103917.html】 问题描述:n个元素的集合{1,2,……, n }可以划分为若干个非空子集。

【文章来源:http://www.cnblogs.com/dolphin0520/archive/2011/07/12/2103917.html】

问题描述:
n个元素的集合{1,2,……, n }可以划分为若干个非空子集。例如,当n=4 时,集合{1,2,3,4}可以划分为15 个不同的非空子集如下:
{{1},{2},{3},{4}},
{{1,2},{3},{4}},
{{1,3},{2},{4}},
{{1,4},{2},{3}},
{{2,3},{1},{4}},
{{2,4},{1},{3}},
{{3,4},{1},{2}},
{{1,2},{3,4}},
{{1,3},{2,4}},
{{1,4},{2,3}},
{{1,2,3},{4}},
{{1,2,4},{3}},
{{1,3,4},{2}},
{{2,3,4},{1}},
{{1,2,3,4}}
给定正整数n,计算出n个元素的集合{1,2,……, n }可以划分为多少个不同的非空子集。  

思路:对于n个元素的集合,可以划分成由m(1<=m<=n)个子集构成的子集,如 {{1},{2},{3},{4}}就是由4个子集构成的非空子集。假设f(n,m)表示将n个元素的集合划分成由m个子集构成的集合的个数,那么可以这样来看:

     1)若m==1,则f(n,m)=1;

     2)若n==m,则f(n,m)=1;

     3)若非以上两种情况,f(n,m)可以由下面两种情况构成

        (a).向n-1个元素划分成的m个集合里面添加一个新的元素,则有m*f(n-1,m)种方法;

        (b).向n-1个元素划分成的m-1个集合里添加一个由一个元素形成的独立的集合,则有f(n-1,m-1)种方法。

因此:

             1     (m==1||n==m)

f(n,m)=

             f(n-1,m-1)+m*f(n-1,m)       (m<n&&m!=1)

 1 #include<stdio.h>
 2 
 3 int f(int n,int m)
 4 {
 5     if(m==1||n==m)
 6         return 1;
 7     else
 8         return f(n-1,m-1)+f(n-1,m)*m;
 9 }
10 
11 int main(void)
12 {
13     int n;
14     while(scanf("%d",&n)==1&&n>=1)
15     {
16         int i;
17         int sum=0;
18         for(i=1;i<=n;i++)
19         {
20             sum+=f(n,i);
21         }
22         printf("%d\n",sum);
23     }
24     return 0;
25 }

 

 

 

 

 

 

 

相关文章
|
算法 C++
92 C++ - 常用集合算法
92 C++ - 常用集合算法
75 0
|
8月前
|
算法 C++ 开发者
【C/C++ 数据结构 】图顶点个数和边的关系
【C/C++ 数据结构 】图顶点个数和边的关系
431 0
|
8月前
|
Java
leetcode:698-划分为k个相等的子集
leetcode:698-划分为k个相等的子集
36 0
leetcode:698-划分为k个相等的子集
【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )
【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )
482 0
【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )
|
算法
1315:【例4.5】集合的划分
1315:【例4.5】集合的划分
104 0
实现对周的划分
实现对周的划分
78 0
|
算法
集合划分问题
集合划分问题
221 0
集合划分问题
python实现将给定列表划分为元素和大致相等的两个子列表
python实现将给定列表划分为元素和大致相等的两个子列表
|
前端开发 JavaScript 算法
【戏玩算法】06-集合
在前面的几篇文章中,我们学习了栈、队列以及链表,在这篇文章中学习一个新的数据结构——集合。
121 0
【戏玩算法】06-集合