集合划分问题

简介: 集合划分问题

问题描述


n个元素的集合{1,2,.,n }可以划分为若干个非空子集。例如,当n=4 时,集合{1,2,3,4}可以划分为15个不同的非空子集如下:

四个子集:{1},{2},{3},{4}},

三个子集:{{1,2},{3},{4}},{{1,3},{2},{4}}, {{1,4},{2},{3}},{{2,3},{1},{4}}, {{2,4},{1},{3}},{{3,4},{1},{2}},

两个子集: {{1,2},{3,4}},{{1,3},{2,4}}, {{1,4},{2,3}},{{1,2,3},{4}}, {{1,2,4},{3}},{{1,3,4},{2}}, {{2,3,4},{1}},

一个子集:{{1,2,3,4}}

算法设计:


给定正整数n 和m,计算出n 个元素的集合{1,2,., n }可以划分为多少个不同的由m 个非空子集组成的集合。

数据输入:


由文件input.txt 提供输入数据。文件的第1 行是元素个数n 和非空子集数m。

image.png

问题分析


回顾问题:给定正整数n 和m,计算出n 个元素的集合{1,2,., n }可以划分为多少个不同的由m 个非空子集组成的集合。假定多少个用F(m,n)来计算

若m=1,则F(m,n)=1 --> 所有元素放在一个大集合中

若m=n,则F(n,m)=1 --> 所有元素都是单元素集合,然后将单元素集合放在一个大集合中

最后剩下F(n,m),可以分为以下两个情况:

a. 向n-1个元素中划分的m个非空字节构成的集合中添加一个新的元素,则有mF(n-1,m)种情况

b. 向n-1个元素中划分的m-1的集合中添加一个元素的独立集合,则总非空集合有m-1+1=m个,则有1F(n-1,m-1)种情况


综合上面的情况,我们可以得出一个递归的式:

image.png

image.png

代码实现


#include "stdafx.h"
#include "stdio.h"
#include "iostream.h"
#include<fstream>//用于文件输入输出
using namespace std;
int setpart(int n,int m)//递归实现
{
    if(m==1 || m==n) return 1;
    return setpart(n-1,m-1)+m*setpart(n-1,m);
}
int main(int argc, char* argv[])
{
    ifstream infile("input.txt",ios::in);
    int m,n;
    infile>>n;
    infile>>m;
    cout << "元素个数为" <<n<<'\t'<<"组成集合的非空集合数:"<<m<< endl;
    int out;
    out=setpart(n,m);
    ofstream outfile;
    outfile.open("out.txt");
    cout << "Writing to the file" << endl;
    cout << out << endl;
    outfile<<out<< endl;
    return 0;
}
相关文章
|
7月前
|
算法 测试技术 C#
【离散化】【 树状树状 】100246 将元素分配到两个数组中
【离散化】【 树状树状 】100246 将元素分配到两个数组中
|
7月前
|
Java
leetcode:698-划分为k个相等的子集
leetcode:698-划分为k个相等的子集
34 0
leetcode:698-划分为k个相等的子集
【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )
【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )
458 0
【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )
|
算法
1315:【例4.5】集合的划分
1315:【例4.5】集合的划分
102 0
实现对周的划分
实现对周的划分
69 0
python实现将给定列表划分为元素和大致相等的两个子列表
python实现将给定列表划分为元素和大致相等的两个子列表
【分治法】集合划分问题
【分治法】集合划分问题
447 0
|
算法 前端开发
划分数组使最大差为 K
🎈每天进行一道算法题目练习,今天的题目是“划分数组使最大差为 K”。
251 0
【集合论】集合概念与关系 ( 集合表示 | 数集合 | 集合关系 | 包含 | 相等 | 集合关系性质 )
【集合论】集合概念与关系 ( 集合表示 | 数集合 | 集合关系 | 包含 | 相等 | 集合关系性质 )
359 0

热门文章

最新文章