拓扑学中欧拉公式的证明

简介:

欧拉公式,V+F-E=2意思是一个多面体,顶点数目V+面的数目F-边的数目E=2.

中学的时候很早就知道了,但没有证明过,现参考了一些文档,证明如下:

先考察平面上的一些图像,一根线段V+F-E=2+0-1=1.

两根线段V+F-E=3+0-2=1.三角形V+F-E=3+1-3=1.

假设有一个图形有V=v,F=f,E=e。设v+f-e=x当图形中有多边形有3条边以上,划一个对角线。在构成一个三角形。此时V=v,F=f+1,E=e+1.则V+F-E=v+f+1-(e+1)=v+f-e=x。即V+F-E的值没变。

1.每次移除和外部空间共享2条边的三角形,那么V=v-1,F=f-1,E=e-2。此时V+F-E的值没变。

2.接着依次移除和外部空间共享1条边的三角形的那条共享边,则V=v,F=f-1,E=e-1.此时V+F-E的值没变。

考虑到有可能执行步骤2之后,又会出现外部空间共享2条边的三角形,此时需要再次执行步骤1.在这样步骤1和步骤2之间循环数次,知道最后只剩下一个和外部共享3条边的一个三角形。到此时此时V+F-E的值始终没变。因此V+F-E=1.

 

设想,当多面体中取走任意一个面,再将多面的展开铺平,就会出现平面上的类似网格图形。因此反过来,将平面上的多边形折笼起来,所有外部的点连接起来成为一个多边形。此多边形就是一个面,有了这个面,平面上的多边形可以完整的拼成多面体。

因此多面体就会比平面上的面再多1个面,因此V+F-E=2.事实上,可以将多边形的外部区域看做是对应的最后一个面。因此,平面上的多边形,点,线,和所分割的平面也满足欧拉公式V+F-E=2。

证毕。





















本文转自cnn23711151CTO博客,原文链接: http://blog.51cto.com/cnn237111/638594,如需转载请自行联系原作者









相关文章
|
1月前
|
并行计算 算法 安全
Bulletproof范围证明之优化
【11月更文挑战第9天】Bulletproof 是一种高效的零知识证明技术,广泛应用于加密货币等领域,用于证明交易金额在合法范围内而不泄露具体数值。本文介绍了 Bulletproof 的基本概念及其在算法、计算资源利用和协议交互等方面的优化方向,探讨了不同应用场景下的优化需求及面临的安全性和兼容性挑战。
|
7月前
|
算法 NoSQL 容器
1.贪心理论与常见的证明方法
1.贪心理论与常见的证明方法
欧拉公式的简单证明
欧拉公式的简单证明
745 0
欧拉公式的简单证明
|
Web App开发 机器学习/深度学习 安全
干货分享:可证明安全的隐私计算
干货分享:可证明安全的隐私计算
377 0
|
Java
【附录】概率基本性质与法则的推导证明
本文从概率论三大公理出发,推导证明概率基本法则。
156 0
【附录】概率基本性质与法则的推导证明
|
算法
如何证明一个问题是VNP问题?计算机科学家找到了一种简单方法
如何证明一个问题是VNP问题?计算机科学家找到了一种简单方法
|
机器学习/深度学习 人工智能
【计算理论】计算理论总结 ( 泵引理 Pumping 证明 ) ★★
【计算理论】计算理论总结 ( 泵引理 Pumping 证明 ) ★★
408 0
|
区块链
比特币工作量证明,“法外之地”的法
在工作量证明的区块链中,系统会根据算力大小来选取打包的节点,对于节点来说,单纯的打包和数据上传非常简单,不过,系统需要选取一个特定的节点来处理某件事,为了避免众多节点对同一件事打包而引起不必要的分叉,比特币通过前文中提到的哈希穷举,增加打包难度,以延长打包时间。
1557 0