图案的研究

简介:
群里常有人问一些图案的定义,没事研究了一下
1.棋盘格一类的
我定义了个8×8的
打开PS,新建一个500×500白底画布,用于发挥的舞台,好了接下来要有我们的"瓷砖"啊,好了再新建一个8*8的画布定义图案。
如图这样,我放大了
 
最终填充效果
 
其实控制图案的大小可以得到不同的效果,下面这个是32×32大小的图案:

本文转自 xcf007 51CTO博客,原文链接:http://blog.51cto.com/xcf007/100684,如需转载请自行联系原作者



相关文章
|
1月前
|
机器学习/深度学习 编解码 人工智能
ColorFlow:腾讯和清华大学联合推出的图像序列着色模型,通过参考图像的颜色对黑白漫画进行着色生成彩色漫画
ColorFlow是由清华大学和腾讯ARC实验室共同推出的图像序列着色模型,通过检索增强、上下文学习和超分辨率技术,确保黑白图像序列的着色与参考图像颜色一致,适用于漫画、动画制作等工业应用。
432 15
ColorFlow:腾讯和清华大学联合推出的图像序列着色模型,通过参考图像的颜色对黑白漫画进行着色生成彩色漫画
|
8月前
|
机器学习/深度学习 数据采集 算法
【传知代码】无监督动画中关节动画的运动表示-论文复现
本文探讨了数据驱动的无监督动画技术,尤其是针对关节动画的运动表示。研究提出三个主要贡献:1) 使用区域表示增强一阶运动稳定性;2) 明确建模背景运动以稳定点识别;3) 在无监督空间中解耦形状和姿态防止形状转移。通过这些改进,无监督运动转移的精度提升,特别是对关节对象的动画。作者还创建了一个新的TED演讲者数据集,证明了方法的有效性,其性能优于现有技术。文章总结了监督和无监督图像动画方法,并介绍了关节动画的基本原理,包括骨架、关节表示和姿势表示。核心逻辑涉及一阶运动模型、PCA-based运动估计和背景运动估计,以及图像生成过程。
【传知代码】无监督动画中关节动画的运动表示-论文复现
|
8月前
|
机器学习/深度学习 编解码 物联网
Adobe新研究0.11秒从草图生成图像
Adobe Research和卡内基梅隆大学的研究团队开发了一项新技术,能在0.11秒内将创意草图转化为高质图像,突破了传统图像合成技术的速度和数据需求限制。采用单步图像翻译方法,结合对抗性学习,适应性调整网络以快速适应新控制信号。实验显示, CycleGAN-Turbo和pix2pix-Turbo模型在图像转换任务中表现优越,但仍有控制强度、负提示和高分辨率合成的局限。
93 2
Adobe新研究0.11秒从草图生成图像
|
机器学习/深度学习 编解码 算法
CV之NoGAN:利用图像增强技术(图片上色)实现对旧图像和电影片段进行着色和修复(爱因斯坦、鲁迅旧照/清末官员生活场景等案例)
CV之NoGAN:利用图像增强技术(图片上色)实现对旧图像和电影片段进行着色和修复(爱因斯坦、鲁迅旧照/清末官员生活场景等案例)
CV之NoGAN:利用图像增强技术(图片上色)实现对旧图像和电影片段进行着色和修复(爱因斯坦、鲁迅旧照/清末官员生活场景等案例)
|
人工智能 编解码 移动开发
NeRF基于线稿生成逼真三维人脸,细节风格随意改,论文已上SIGGRAPH
NeRF基于线稿生成逼真三维人脸,细节风格随意改,论文已上SIGGRAPH
475 0
|
机器学习/深度学习
识别手绘数字图像
识别手绘数字图像
94 0
|
机器学习/深度学习 人工智能 计算机视觉
华南理工TANGO项目原作解读: 文本驱动的三维物体风格化模型
华南理工TANGO项目原作解读: 文本驱动的三维物体风格化模型
189 0
|
并行计算 前端开发 数据可视化
【视觉基础篇】11 # 图案生成:如何生成重复图案、分形图案以及随机效果?
【视觉基础篇】11 # 图案生成:如何生成重复图案、分形图案以及随机效果?
215 0
【视觉基础篇】11 # 图案生成:如何生成重复图案、分形图案以及随机效果?
|
机器学习/深度学习 编解码 人工智能
首篇BEV感知生成工作!BEVGen:从鸟瞰图布局生成环视街景图像
本文提出了BEVGen,这是一个条件生成式模型,它合成了一组真实且空间一致的环视图像,这些图像与交通场景的BEV布局相匹配。BEVGen结合了一种新颖的交叉视图转换和空间注意力设计,学习相机和地图视图之间的关系,以确保它们的一致性。BEVGen可以精确地渲染道路和车道线,以及在不同的天气条件和时间生成交通场景。
首篇BEV感知生成工作!BEVGen:从鸟瞰图布局生成环视街景图像
|
存储 机器学习/深度学习 传感器
【图像识别】基于模板匹配实现蓝色、绿色、黄色车牌识别附matlab代码
【图像识别】基于模板匹配实现蓝色、绿色、黄色车牌识别附matlab代码