[攻克存储] 存储芯片的写屏蔽及扩展

简介:

    首先,我们还是看一个电路图:

    

   由上一篇文章我们知道,这是ARM芯片与16位数据位宽的SRAM存储芯片的典型连接图,ARM芯片只需给出要访问的高16位地址,数据总线上则会出现两个字节的数据,供ARM读取,然后ARM根据A0的值来决定访问高字节还是低字节。
 
   这只是存储芯片的读数据时的访问过程,在读数据过程中,存储芯片不需要知道ARM在某个时刻访问的是高字节还是低字节,只需要把指定地址空间处的16位数据送到数据总线即可。但是,对于写过程,就不是这么简单了。
 
   显然, 对于向存储芯片中写数据的情况,存储芯片是需要知道当前ARM芯片到底是写的是低字节,还是高字节,还是整个字。那么,这一项信息ARM靠什么方式通知存储芯片呢?
 
   纵观16位的存储芯片(无论是SRAM、SDRAM还是DDR),我们可以发现,芯片一般都提供两个表征着写屏蔽的引脚。例如 SRAM芯片一般是(nLB,nUB),DDR2芯片一般是(LDM,UDM),一般,nLB、LDM标识低字节,而 nUB 、UDM 一般标识高字节。例如,对于 SRAM芯片而言,在写时序中,只有 nLB 有效,才允许写低字节;只有 nUB 有效,才允许写高字节。
 
   另外,有的8位存储芯片也有这样的写屏蔽引脚,用于多片8位存储芯片的扩展,由于8位数据宽的芯片不存在高低字节,故写屏蔽引脚一般只有一个,例如有的8位DDR2芯片的写屏蔽引脚为DM。
 
   相应地,ARM端一般也会有一些引脚,用于标识当前写时序中,正在写的是低字节、高字节还是整个字。例如,s3c2440 的相关引脚如下:
 

    针对不同的存储芯片,使用的是不同的写屏蔽引脚,如 SDRAM/DDR2 则使用 DQM[3:0],SRAM则使用nBE[3:0],而 nWBE[3:0]则是用来连接多个8位存储器扩展系统的,由于一般8位存储器只有nWE引脚,对于选通那一片进行写,则由nWBE[3:0]来决定。
 
    将 ARM 端的写屏蔽引脚与对应的存储芯片的写屏蔽引脚相连即可,一般ARM端都会设计多组写屏蔽引脚,例如s3c2440的DQM引脚有4个,用于多片存储芯片扩展的情况。
 
    下面再讲讲存储芯片的扩展,一般都是进行数据位宽的扩展,即使用2片8位存储芯片扩展位16位存储系统,或者是2片16位存储芯片扩展位32位存储系统。
 
    一个典型的存储芯片扩展电路图如下:    

    由图可以看出,该电路将两片16位宽的SRAM芯片扩展位了一个32位宽的存储系统,两片SRAM芯片的引脚连接几乎相同,那么,究竟是什么决定着左边这一片SRAM作为低字节,而右边那一片作为高字节呢?由上面的写屏蔽的知识我们知道,就是写屏蔽位决定的,左边这片SRAM芯片连接的是nBE0~nBE1,决定了其为低2字节,而右边的nBE2~nBE3决定了其为高2字节。


本文转自 Jhuster 51CTO博客,原文链接:http://blog.51cto.com/ticktick/686186,如需转载请自行联系原作者
相关文章
|
存储 编解码 算法
信道编码概述 |带你读《5G空口特性与关键技术》之六
纠错编码的目的,是通过尽可能小的冗余开销确保接收端能自动地纠正数据传输中所发生的差错。在同样的误码率下,所需要的开销越小,编码的效率也就越高。
11496 2
信道编码概述 |带你读《5G空口特性与关键技术》之六
|
传感器 5G UED
5G 标准化进程|带你读《5G空口特性与关键技术》之二
从 2016 年起,3GPP 启动了 R14 研究项,目标是在 2020 年实现 5G 的商业化部署。为此,3GPP 采取了按阶段定义规范的方式。第一阶段目标是R15,旨在完成规范 5G 的有限功能。第二阶段是 R16,旨在完成规范 IMT-2020 所定义的所有功能,将于 2019 年年底到 2020 年完成。
5G 标准化进程|带你读《5G空口特性与关键技术》之二
5G 物理资源 |带你读《5G空口特性与关键技术》之八
基站信道带宽是指基站侧上下行所支持的单个 NR 射频载波。同一频段下,支持不同的 UE 信道带宽。在基站信道带宽范围内,UE 信道带宽可以灵活配置。UE 的 BWP 的信号等于或者小于 RF 载波的载波资源块数时,基站就能够在任何载波资源块上收发 UE 的 1 个或者多个 BWP 的信号。
5G 物理资源  |带你读《5G空口特性与关键技术》之八
|
5G 调度 芯片
5G 帧结构 |带你读《5G空口特性与关键技术》之七
虽然在较高的载波频率下通常不使用较小的子载波间隔,但是参数集可以独立于频段进行选择。不同子载波间隔可用于不同的场景下。如对于室外宏覆盖和微小区,可以采用 30kHz 子载波间隔;而室内站则可以采用 60kHz 子载波间隔;对于毫米波,则可以采用更大的子载波间隔,如 120kHz。
11466 2
5G 帧结构 |带你读《5G空口特性与关键技术》之七
西门子S7-1200的数据存取方式有哪些?
西门子S7-1200 CPU中可以按照位、字节、字和双字,对存储单元进行寻址。二进制数的一位只有0或1两种不同的取值,可以用来表示数字量或称开关量的两种不同的状态,如触点的断开和接通线圈的通电和断电等。
西门子S7-1200的数据存取方式有哪些?
西门子S7-1200的数据存取方式有哪些
本篇我们来学习S7-1200的数据存取方式。
西门子S7-1200的数据存取方式有哪些
|
前端开发 算法 5G
带宽部分(BWP)|带你读《5G空口特性与关键技术》之十
天线端口可以看成是一个逻辑概念而非物理概念,每个天线端口代表一种特定的信道模型,采用相同天线端口的信号可以看作是采用完全相同的信道来进行传送的。由此可见,同一个天线端口上,承载一个符号的信道可以由承载另一个符号的信道来推断。
11333 2
带宽部分(BWP)|带你读《5G空口特性与关键技术》之十
|
5G 调度
波形设计 |带你读《5G空口特性与关键技术》之四
峰均功率比(PAPR,Peak to Average Power Ratio)是发射机峰值功率和均值功率的比,它由所采用的信号波形决定,对于发射机的能耗影响很大,是发射波形的一项重要指标。峰均功率比越低,对于提高发射机的效率越有好处。这一指标对于上行终端侧具有尤其重要的意义。
波形设计 |带你读《5G空口特性与关键技术》之四
带你读《PDN设计之电源完整性: 高速数字产品的鲁棒和高效设计》之一:电源分配网络工程
基于本书关注的重点,作者阐述了瞬时电流和PDN电压噪声之间的关系。作者引入了瞬时电流的概念,并讨论了该电流对电压响应的影响,并提供几个特定情况下的瞬时电流波形来加以说明和验证。这些知识能够帮助读者理解PDN的阻抗曲线,以及与特定电流模型之间的相互作用,并可以获得其相应的电压响应。
|
芯片 存储
带你读《PDN设计之电源完整性: 高速数字产品的鲁棒和高效设计》之二:PDN阻抗设计基本原理
基于本书关注的重点,作者阐述了瞬时电流和PDN电压噪声之间的关系。作者引入了瞬时电流的概念,并讨论了该电流对电压响应的影响,并提供几个特定情况下的瞬时电流波形来加以说明和验证。这些知识能够帮助读者理解PDN的阻抗曲线,以及与特定电流模型之间的相互作用,并可以获得其相应的电压响应。

热门文章

最新文章