tflearn:to_categorical和shuffle

简介:
to_categorical(y, nb_classes)
to_categorical.
Convert class vector (integers from 0 to nb_classes)
to binary class matrix, for use with categorical_crossentropy.
Arguments:
y: `array`. Class vector to convert.
nb_classes: `int`. Total number of classes.


shuffle(*arrs)
shuffle.
Shuffle(洗牌) given arrays at unison(一致), along first axis.
Arguments:
*arrs: Each array to shuffle at unison.
Returns:
Tuple of shuffled arrays.
目录
相关文章
|
5月前
|
机器学习/深度学习 数据可视化 TensorFlow
TFLearn介绍
【7月更文挑战第27天】TFLearn介绍。
40 4
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
52 3
|
算法 开发者 索引
【C++11算法】random_shuffle和shuffle
【C++11算法】random_shuffle和shuffle
315 0
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch使用专题 | 2 :Pytorch中数据读取-Dataset、Dataloader 、TensorDataset 和 Sampler 的使用
介绍Pytorch中数据读取-Dataset、Dataloader 、TensorDataset 和 Sampler 的使用
|
机器学习/深度学习 传感器 算法
论文分享:「FED BN」使用LOCAL BATCH NORMALIZATION方法解决Non-iid问题
论文分享:「FED BN」使用LOCAL BATCH NORMALIZATION方法解决Non-iid问题
149 0
|
机器学习/深度学习 PyTorch 算法框架/工具
|
存储 Python
有趣的shuffle方法
有趣的shuffle方法
148 0
criterion = torch.nn.MSELoss() ;loss = criterion(y_pred.squeeze(), Y_train.squeeze()) 其中loss.item()的结果是指当前批次所有样本的mse总和还是平均值?
loss.item()的结果是当前批次所有样本的均方误差(MSE)值,而不是总和。这是因为torch.nn.MSELoss()默认返回的是每个样本的MSE值之和,并且在计算总体损失时通常会将其除以样本数量来得到平均损失。 在代码中,loss = criterion(y_pred.squeeze(), Y_train.squeeze())语句计算了y_pred和Y_train之间的MSE损失,然后通过调用item()方法获取了该批次训练样本的平均MSE损失。如果希望获取该批次训练样本的总MSE损失,可以使用loss.item() * batch_size来计算,其中batch_size是该批次
377 0
|
机器学习/深度学习 算法 TensorFlow
神奇的Batch Normalization 仅训练BN层会发生什么
神奇的Batch Normalization 仅训练BN层会发生什么
242 0
神奇的Batch Normalization 仅训练BN层会发生什么