Dynamo涉及的算法和协议——p2p架构,一致性hash容错+gossip协议获取集群状态+向量时钟同步数据

简介:

转自:http://www.letiantian.me/2014-06-16-dynamo-algorithm-protocol/

Dynamo是Amazon的一个分布式的键值系统,P2P架构,没有主从的概念,数据一致性做到了最终一致。Apache Cassandra参考了它的实现方法。

一致性哈希

关于一致性哈希的具体内容,可以参考一致性哈希

容错

由于一致性哈希的使用,Dynamo集群中的节点在逻辑上可以认为是一个圆环。假设有M个节点,我们从某个节点开始顺时针地依次为每个节点标号为1、2、3、…、M。出于容错的需要,假设一份数据存3份。如果某份数据通过一致性哈希被存储到了节点2中,那么这份数据的另外两个副本存储在节点3和节点4中。如果节点3临时性的宕机了,那么在节点3恢复之前,会把增量数据存入节点5中;待节点3恢复后,节点5通过Gossip协议发现节点3恢复了,节点5会将那些暂存的数据“数据回传”给节点5。判断节点3的宕机是临时性的还是永久性的方法比较简单,就是看它宕(dang)机的时间长短。如果节点3永久性宕机了,那么需要使用有效的方式将这份数据的完整版本同步到节点5中。

Gossip协议

Gossip协议,也就是闲话协议。主要用来让每个节点知道集群的最新状态。这个协议其实就是:

with a given frequency, each machine picks another machine at random and shares any hot rumors.

节点之间以固定的时间频率交换信息。在交换信息时,一节点随机选取集群中的其他某个节点交换各自对集群的掌握情况,并据此更新到最新(或者较新)的集群状态信息。

NWR

N表示一份数据的副本数量。W代表写操作成功所至少需要的副本数,即在一次写入操作中至少W个副本写成功了,这次写操作才算成功。R代表读操作成功所至少需要的副本数。Dynamo认为只要R+W>N,可以保证集群的可用性。N、W、R的值是可以设定的。如果注重读的效率,可以把R的值设置小些;如果注重写的效率,可以把W的值设置小些。NWR并不能保证数据一致。如果R=N且W=N,那么可以保证一致性。

向量时钟

对于小型的或者要求不高的分布式系统而言,可以使用时间戳的方式保证副本之间数据的一致性,在时间戳方式下,多使用NTP协议同步时钟,节点之间的时钟有较小的误差。不过在大型分布式系统中,还是换种方式比较好。

向量时钟(Vector Clock),Amazon Dynamo使用的解决数据一致性问题的方法。这是一个逻辑上的时钟。假设一份数据三个副本,这三个副本分别命名为n1n2n3,每个副本都会记录所有副本的时钟(包括自身的),一个副本一个向量,三个副本则共有三个向量。所谓时钟,其实就是所存储数据的版本号,一般从0递增即可。更新时钟的规则如下:

  • 初始化所有时钟,即全部置0。
  • 某副本有数据更新时,将其自身的向量中自身的时钟的值加一个步长,一般步长设置为1。
  • 当一副本向其他副本发送消息时(一般是为了同步数据),这个副本会把自身的向量一起发送给其他副本。
  • 若一副本接收到消息,比较自身的向量和发送来的向量,如果发送来的消息是希望同步数据,那么需要判断是否更新数据。对每个向量的元素比较并取最大值,以此更新自身的向量。那么,如何更新数据? 该副本自身存储的向量的每一个值都小于发送来的向量的每一个值,说明发送来的数据比较新,那么更新数据。如果都大于,则不需要更新数据。当然,第三种情况是既有大于的关系,也有小于的关系;还有一种情况是向量相同,但是数据不同。这种情况下,需要进行冲突的解决,比如再比较时间戳。

举个例子。

假设,n1n2n3要存储的用户id为1的用户的昵称。
最开始,三个副本的向量时钟以及数据如下表示:

n1: { vector: {n1:0, n2:0, n3:0}, data: null }
n2: { vector: {n1:0, n2:0, n3:0}, data: null }
n3: { vector: {n1:0, n2:0, n3:0}, data: null } 

时刻1,n1将用户昵称更新为john,向量时钟以及数据更新后如下:

n1: { vector: {n1:1, n2:0, n3:0}, data: 'jian' }
n2: { vector: {n1:0, n2:0, n3:0}, data: null }
n3: { vector: {n1:0, n2:0, n3:0}, data: null } 

此时对系统进行读操作,结果应是’jian’。n1给n2、n3发送了消息,更新后如下:

n1: { vector: {n1:1, n2:0, n3:0}, data: 'jian' }
n2: { vector: {n1:1, n2:0, n3:0}, data: 'jian' }
n3: { vector: {n1:1, n2:0, n3:0}, data: 'jian' } 

此时对系统进行读操作,结果应是’jian’。

时刻2,n3将用户昵称改为’fan’,更新后如下:

n1: { vector: {n1:1, n2:0, n3:0}, data: 'jian' }
n2: { vector: {n1:1, n2:0, n3:0}, data: 'jian' }
n3: { vector: {n1:1, n2:0, n3:1}, data: 'fan' } 

此时对系统进行读操作,结果应是’fan’。n3先给n2发送了消息,更新后如下:

n1: { vector: {n1:1, n2:0, n3:0}, data: 'jian' }
n2: { vector: {n1:1, n2:0, n3:1}, data: 'fan' }
n3: { vector: {n1:1, n2:0, n3:1}, data: 'fan' } 

当n3要给n1发消息之前,n1却对数据进行了修改,例如将用户昵称改为’ ruan’,更新后如下:

n1: { vector: {n1:2, n2:0, n3:0}, data: 'ruan' }
n2: { vector: {n1:1, n2:0, n3:1}, data: 'fan' }
n3: { vector: {n1:1, n2:0, n3:1}, data: 'fan' } 

此后,可能会出现下面两种冲突:

  • 对系统进行读操作,发现n2、n3与n1的向量没有偏序关系(即不小于也不大于),而且存的数据的值是不同的。此时需要解决冲突。
  • n1收到了n3发送来的消息,比较了两者的向量,发现了冲突,于是想办法解决。

资料

Vector clock

Gossip protocol

2.4.5 向量时钟(1)

《大规模分布式存储系统——原理解析与架构实践》第五章 杨传辉 著
《深入NoSQL》 Shashank Tiwari 著 巨成 译









本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6248138.html,如需转载请自行联系原作者

相关文章
|
2月前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
57 8
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
400 7
|
2月前
|
数据采集 搜索推荐 数据管理
数据架构 CDP 是什么?
数据架构 CDP 是什么?
68 2
|
13天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
41 11
|
14天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
51 11
|
2月前
|
负载均衡 Dubbo 算法
集群容错架构设计
集群容错架构设计
33 1
集群容错架构设计
|
2月前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
3月前
|
存储 监控 负载均衡
|
4月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
59 5
|
3月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。

热门文章

最新文章