lucene正向索引——正向信息,Index –> Segments (segments.gen, segments_N) –> Field(fnm, fdx, fdt) –> Term (tvx, tvd, tvf)

简介:

转自:http://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623599.html

上面曾经交代过,Lucene保存了从Index到Segment到Document到Field一直到Term的正向信息,也包括了从Term到Document映射的反向信息,还有其他一些Lucene特有的信息。下面对这三种信息一一介绍。

4.1. 正向信息

Index –> Segments (segments.gen, segments_N) –> Field(fnm, fdx, fdt) –> Term (tvx, tvd, tvf)

上面的层次结构不是十分的准确,因为segments.gen和segments_N保存的是段(segment)的元数据信息(metadata),其实是每个Index一个的,而段的真正的数据信息,是保存在域(Field)和词(Term)中的。

4.1.1. 段的元数据信息(segments_N)

一个索引(Index)可以同时存在多个segments_N(至于如何存在多个segments_N,在描述完详细信息之后会举例说明),然而当我们要打开一个索引的时候,我们必须要选择一个来打开,那如何选择哪个segments_N呢?

Lucene采取以下过程:

  • 其一,在所有的segments_N中选择N最大的一个。基本逻辑参照SegmentInfos.getCurrentSegmentGeneration(File[] files),其基本思路就是在所有以segments开头,并且不是segments.gen的文件中,选择N最大的一个作为genA。
  • 其二,打开segments.gen,其中保存了当前的N值。其格式如下,读出版本号(Version),然后再读出两个N,如果两者相等,则作为genB。
  • segments.gen

    IndexInput genInput = directory.openInput(IndexFileNames.SEGMENTS_GEN);//"segments.gen" 
    int version = genInput.readInt();//读出版本号 
    if (version == FORMAT_LOCKLESS) {//如果版本号正确 
        long gen0 = genInput.readLong();//读出第一个N 
        long gen1 = genInput.readLong();//读出第二个N 
        if (gen0 == gen1) {//如果两者相等则为genB 
            genB = gen0; 
        } 
    }

  • 其三,在上述得到的genA和genB中选择最大的那个作为当前的N,方才打开segments_N文件。其基本逻辑如下:

    if (genA > genB) 
        gen = genA; 
    else 
        gen = genB;

 

如下图是segments_N的具体格式:

segments_N

  • Format:
    • 索引文件格式的版本号。
    • 由于Lucene是在不断开发过程中的,因而不同版本的Lucene,其索引文件格式也不尽相同,于是规定一个版本号。
    • Lucene 2.1此值-3,Lucene 2.9时,此值为-9。
    • 当用某个版本号的IndexReader读取另一个版本号生成的索引的时候,会因为此值不同而报错。
  • Version:
    • 索引的版本号,记录了IndexWriter将修改提交到索引文件中的次数。
    • 其初始值大多数情况下从索引文件里面读出,仅仅在索引开始创建的时候,被赋予当前的时间,已取得一个唯一值。
    • 其值改变在IndexWriter.commit->IndexWriter.startCommit->SegmentInfos.prepareCommit->SegmentInfos.write->writeLong(++version)
    • 其初始值之所最初取一个时间,是因为我们并不关心IndexWriter将修改提交到索引的具体次数,而更关心到底哪个是最新的。IndexReader中常比较自己的version和索引文件中的version是否相同来判断此IndexReader被打开后,还有没有被IndexWriter更新。

//在DirectoryReader中有一下函数。

public boolean isCurrent() throws CorruptIndexException, IOException { 
  return SegmentInfos.readCurrentVersion(directory) == segmentInfos.getVersion(); 
}

  • NameCount
    • 是下一个新段(Segment)的段名。
    • 所有属于同一个段的索引文件都以段名作为文件名,一般为_0.xxx, _0.yyy,  _1.xxx, _1.yyy ……
    • 新生成的段的段名一般为原有最大段名加一。
    • 如同的索引,NameCount读出来是2,说明新的段为_2.xxx, _2.yyy

image

  • SegCount
    • 段(Segment)的个数。
    • 如上图,此值为2。
  • SegCount个段的元数据信息:
    • SegName
      • 段名,所有属于同一个段的文件都有以段名作为文件名。
      • 如上图,第一个段的段名为"_0",第二个段的段名为"_1"
    • SegSize
      • 此段中包含的文档数
      • 然而此文档数是包括已经删除,又没有optimize的文档的,因为在optimize之前,Lucene的段中包含了所有被索引过的文档,而被删除的文档是保存在.del文件中的,在搜索的过程中,是先从段中读到了被删除的文档,然后再用.del中的标志,将这篇文档过滤掉。
      • 如下的代码形成了上图的索引,可以看出索引了两篇文档形成了_0段,然后又删除了其中一篇,形成了_0_1.del,又索引了两篇文档形成_1段,然后又删除了其中一篇,形成_1_1.del。因而在两个段中,此值都是2。

 

IndexWriter writer = new IndexWriter(FSDirectory.open(INDEX_DIR), new StandardAnalyzer(Version.LUCENE_CURRENT), true, IndexWriter.MaxFieldLength.LIMITED); 
writer.setUseCompoundFile(false); 
indexDocs(writer, docDir);//docDir中只有两篇文档

//文档一为:Students should be allowed to go out with their friends, but not allowed to drink beer.

//文档二为:My friend Jerry went to school to see his students but found them drunk which is not allowed.

writer.commit();//提交两篇文档,形成_0段。

writer.deleteDocuments(new Term("contents", "school"));//删除文档二 
writer.commit();//提交删除,形成_0_1.del 
indexDocs(writer, docDir);//再次索引两篇文档,Lucene不能判别文档与文档的不同,因而算两篇新的文档。 
writer.commit();//提交两篇文档,形成_1段 
writer.deleteDocuments(new Term("contents", "school"));//删除第二次添加的文档二 
writer.close();//提交删除,形成_1_1.del

DelGen

  • .del文件的版本号
  • Lucene中,在optimize之前,删除的文档是保存在.del文件中的。
  • 在Lucene 2.9中,文档删除有以下几种方式:
    • IndexReader.deleteDocument(int docID)是用IndexReader按文档号删除。
    • IndexReader.deleteDocuments(Term term)是用IndexReader删除包含此词(Term)的文档。
    • IndexWriter.deleteDocuments(Term term)是用IndexWriter删除包含此词(Term)的文档。
    • IndexWriter.deleteDocuments(Term[] terms)是用IndexWriter删除包含这些词(Term)的文档。
    • IndexWriter.deleteDocuments(Query query)是用IndexWriter删除能满足此查询(Query)的文档。
    • IndexWriter.deleteDocuments(Query[] queries)是用IndexWriter删除能满足这些查询(Query)的文档。


















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6393959.html,如需转载请自行联系原作者

相关文章
|
SQL 存储 Oracle
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
3847 0
|
索引
Elastic: 同一条索引,使用GET _cat/indices?v与GET index/_count查询出来的文档数为什么不同?
首先我们来看官方文档中对于_cat/indices的解释: 原文: These metrics are retrieved directly from Lucene, which Elasticsearch uses internally to power indexing and search. As a result, all document counts include hidden nested documents.
267 0
Elastic: 同一条索引,使用GET _cat/indices?v与GET index/_count查询出来的文档数为什么不同?
|
SQL 存储 关系型数据库
Oracle索引分裂(Index Block Split)
Oracle索引分裂(Index Block Split) 索引分裂:index  block split : 就是索引块的分裂,当一次DML 事务操作修改了索引块上的数据,但是旧有的索引块没有足够的空间去容纳新修改的数据,那么将分裂出一个新的索引块,旧有块的部分数据放到新开辟的索引块上去.
2230 0
|
SQL 索引 存储
Sql Server 聚集索引扫描 Scan Direction的两种方式------FORWARD 和 BACKWARD
原文:Sql Server 聚集索引扫描 Scan Direction的两种方式------FORWARD 和 BACKWARD 最近发现一个分页查询存储过程中的的一个SQL语句,当聚集索引列的排序方式不同的时候,效率差别达到数十倍,让我感到非常吃惊由此引发出来分页查询的情况下对大表做Cluster...
1404 0