[Math]理解卡尔曼滤波器 (Understanding Kalman Filter) zz

简介:

2. 基本模型

2.1 系统模型

卡尔曼滤波模型假设k时刻的真实状态是从(k − 1)时刻的状态演化而来,符合下式:

 (1)

  • Fk 是作用在 Xk−1 上的状态变换模型(/矩阵/矢量)。
  • Bk 是作用在控制器向量uk上的输入-控制模型。
  • Wk 是过程噪声,并假定其符合均值为零,协方差矩阵为Qk的多元正态分布。

 (2)

2.2 测量模型

时刻k,对真实状态 xk的一个测量zk满足下式:

 (3)

其中Hk是观测模型,它把真实状态空间映射成观测空间,vk 是观测噪声,其均值为零,协方差矩阵为Rk,且服从正态分布。

 (4)

初始状态以及每一时刻的噪声{x0, w1, ..., wk, v1 ... vk} 都认为是互相独立的.

卡尔曼滤波要做的是:

已知:

  1. 系统的初始状态 x0

  2. 每个时间的测量 Z

  3. 系统模型和测量模型

求解:

状态x随着时间变化而产生的值


3. 预测与更新

3.1 预测方程

预测是这样一个问题:

已知:

  1. 上一个状态的更新值
  2. 上一个状态的更新值和真实值之间的误差

求解:

  1. 这一个状态的预测值
  2. 这一个状态的预测值和真实值之间的误差

过程包括两个方面:

一、由上一个更新值 Xk-1|k-1 预测这一个预测值 Xk|k-1

二、由上一个更新值和真实值之间的误差 Pk-1|k-1 预测下一个预测值和真实值之间的误差 Pk|k-1

具体来说,就是以下两个方程。

 (预测状态) (5)

 (预测估计协方差矩阵) (6)

这里:

Xk-1|k-1 这种记法代表的是上一次的更新值,后面一个 k-1可以看做 Zk-1, 也就是上一次经过对比Zk-1(实际就是更新)之后所估计出的状态Xk-1。

Xk|k-1 这种记法代表这一次的预测值, 同理于刚才的介绍, 经过上一次Zk-1之后所估计出的状态Xk。

预测公式-预测状态
也就是公式(5), 可以直接由系统模型导出。

预测公式-协方差矩阵:

P代表着估计误差的协方差,代表着一种 confidence ,比如先验估计误差(预测值与真实值之间误差)的协方差


注:

方差有两种形式

协方差的定义:

如果说方差是用来衡量一个样本中,样本值的偏离程度的话。协方差就是用来衡量两个样本之间的相关性有多少,也就是一个样本的值的偏离程度,会对另外一个样本的值偏离产生多大的影响,协方差是可以用来计算相关系数的,相关系数P=Cov(a.b)/Sa*Sb, Cov(a.b)是协方差, Sa Sb 分别是样本标准差。【可以参考另一篇博客《理解协方差》】

cov(x,y)
= E( (x-u)(y-v)' )
= E(xy' - xv' - uy' + uv')
= E(xy') - E(xv') - E(uy') + E(uv')
= E(xy') - uv' - uv' + uv'
= E(xy') - uv'


比较(5)和(1), 相减:

由于 状态估计误差 和 系统噪声 是不相关的

注:

如果随机变量 x和y是不相关的, 那么

Cov(x,y) = 0
=> E( (x-ex)(y-ey)' ) = 0
=> E(xy') - ex*ey' = 0

如果 ex 和ey为0 => E(x,y') = 0 就像上面的情况, 误差和噪声都服从正态分布,所以期望都是0 .

独立的充要条件:P(xy) = P(x)P(y)

3.2 更新方程

更新过程实际上就是一下问题:

已知:

  1. 由上一个更新值得到的当前的预测值。
  2. 当前的观测值
  3. 观测模型

求解:

  1. 融合了预测值和观测的更新值
  2. 由预测值的估计误差得到更新值的估计误差

更新方程如下:

其中K称为kalman增益, 就像一个补偿,决定着预测值应该变化多少幅度,才能变成更新值。

先看一个简单的例子,从这个例子中来推导出这三个方程。

3.3 简单的例子

3.3.1 举例

有一个直线轨道, 轨道上有一个火车,从火车站出发, 在t时刻,火车想要知道自己距离火车站的位置,可以有两个信息来源:

  1. 根据 t-1时刻的状态信息,以及一些控制信息来推断, 状态包括 t-1时刻的位置、速度等, 控制信息包括司机刹车、加速等等。
  2. 根据 t时刻的测量数据来推断, 这里假设车上有一个声波发射器,可以探测到发射到火车站需要多少时间,进而得到离车站的距离。

要想得到一个比较好的结果,显然不能只依靠某一种方法来推断,而 Kalman Filter的方法是:

  • 首先, 利用t-1时刻进行推断, 这一步叫预测

  • 然后, 利用t时刻的measurement 也可以推断, 使用这个推断对预测进行校正, 这一步叫更新

3.3.2 火车位置 - 预测

t=0的时候, 火车状态如 Figure.2 ,这时候, 火车的位置是比较准确的。

t=1的时候, 火车的预测状态如 Figure.3 可以看到, 位置的方差变大了。

火车的预测主要遵循 式(1),而预测的方差在不断变大,也就是说预测的准确度在下降, 这是由累积误差 w 导致的。

3.3.3 火车位置 - 测量

t=1 的时候,我们还有 measurement ,同样可以推断火车的位置,见下图中的蓝色的pdf

3.3.4 火车位置 - 更新

将两个pdf相乘,得到下图中的绿色pdf, 绿色pdf中较高的位置, 意味着预测和测量对这个位置都比较支持。

这里有一个高斯分布的一个重要性质就是,两个高斯分布的乘积还是高斯分布。

This is critical as it permits an endless number of Gaussian pdfs to be multiplied over time, but the resulting
function does not increase in complexity or number of terms; after each time epoch the new pdf is fully represented by a Gaussian function. This is the key to the elegant recursive properties of the Kalman filter。

3.3.5 推导更新方程

红色的pdf是预测的火车位置, 方程如下:

蓝色的pdf是测量的火车位置, 方程如下:

绿色的pdf二者融合的或者位置, 方程如下:

写成如下形式:

这里:


这两个式子,就是kalman滤波的更新方程

但是,这只是一个很特殊的例子,因为这里假设预测和测量都是采用同样的坐标系

更现实的情况是二者需要统一到一个 domain 中

比如上面所举的例子中:

预测的时候, 预测值是用米作为单位的。
但是当测量的时候, 测量得到的值是用声波经过的秒数作为单位的。

必须先要把两个量统一到同一个domain才能进行融合。

比如上式子中, y2 (measurement)实际是声波传递时间的一个正态分布,也就是说单位是秒。

一般做法是把
预测值 => 测量值

y1就变成:

y2不变:

这样两个坐标系都在 mesaurement domain 了。

两个pdf所在坐标系的横轴都是表示时间,而且以秒为单位了。

`
统一domain之后,更新方程就有了如下形式

3.3.5.1 期望更新方程:

H = 1/c

K =  代入,得到

这里的H就相当于观测方程中的H, K就是卡尔曼增益。

3.3.5.2 方差更新方程:

类似地, 融合之后的方差更新变成了

4. 总结

各个变量对应的情况如下:

最终的更新方程

5. 实现

Talk is cheap, show me the code.

%本例子从百度文库中得到, 稍加注释
clear
N=200;%取200个数

%% 生成噪声数据 计算噪声方差
w=randn(1,N); %产生一个1×N的行向量,第一个数为0,w为过程噪声(其和后边的v在卡尔曼理论里均为高斯白噪声) w(1)=0; Q=var(w); % R、Q分别为过程噪声和测量噪声的协方差(此方程的状态只有一维,方差与协方差相同) v=randn(1,N);%测量噪声 R=var(v); %% 计算真实状态 x_true(1)=0;%状态x_true初始值 A=1;%a为状态转移阵,此程序简单起见取1 for k=2:N x_true(k)=A*x_true(k-1)+w(k-1); %系统状态方程,k时刻的状态等于k-1时刻状态乘以状态转移阵加噪声(此处忽略了系统的控制量) end %% 由真实状态得到测量数据, 测量数据才是能被用来计算的数据, 其他都是不可见的 H=0.2; z=H*x_true+v;%量测方差,c为量测矩阵,同a简化取为一个数 %% 开始 预测-更新过程 % x_predict: 预测过程得到的x % x_update:更新过程得到的x % P_predict:预测过程得到的P % P_update:更新过程得到的P %初始化误差 和 初始位置 x_update(1)=x_true(1);%s(1)表示为初始最优化估计 P_update(1)=0;%初始最优化估计协方差 for t=2:N %-----1. 预测----- %-----1.1 预测状态----- x_predict(t) = A*x_update(t-1); %没有控制变量 %-----1.2 预测误差协方差----- P_predict(t)=A*P_update(t-1)*A'+Q;%p1为一步估计的协方差,此式从t-1时刻最优化估计s的协方差得到t-1时刻到t时刻一步估计的协方差 %-----2. 更新----- %-----2.1 计算卡尔曼增益----- K(t)=H*P_predict(t) / (H*P_predict(t)*H'+R);%b为卡尔曼增益,其意义表示为状态误差的协方差与量测误差的协方差之比(个人见解) %-----2.2 更新状态----- x_update(t)=x_predict(t) + K(t) * (z(t)-H*x_predict(t));%Y(t)-a*c*s(t-1)称之为新息,是观测值与一步估计得到的观测值之差,此式由上一时刻状态的最优化估计s(t-1)得到当前时刻的最优化估计s(t) %-----2.3 更新误差协方差----- P_update(t)=P_predict(t) - H*K(t)*P_predict(t);%此式由一步估计的协方差得到此时刻最优化估计的协方差 end %% plot %作图,红色为卡尔曼滤波,绿色为量测,蓝色为状态 %kalman滤波的作用就是 由绿色的波形得到红色的波形, 使之尽量接近蓝色的真实状态。 t=1:N; 

plot(t,x_update,'r',t,z,'g',t,x_true,'b');


本文转自莫水千流博客园博客,原文链接:http://www.cnblogs.com/zhoug2020/p/7742807.html,如需转载请自行联系原作者

相关文章
|
Ubuntu Java Linux
开源线性规划求解器(Linear Programming solver)LP_Solve和CLP的PK
开源线性规划求解器(Linear Programming solver)LP_Solve和CLP的PK
2060 0
开源线性规划求解器(Linear Programming solver)LP_Solve和CLP的PK
|
机器学习/深度学习 自然语言处理 Python
Word2Vec教程-Negative Sampling 负采样
这篇word2vec教程2中(教程1 Word2Vec教程-Skip-Gram模型),作者主要讲述了skip-gram 模型优化的策略-Negative Sampling,使得模型更加快速地训练。通过教程1,我们了解到word2vec它是一个庞大的神经忘网络! 例如,有一个包含10000个单词的词汇表,向量特征为300维,我们记得这个神经网络将会有两个weights矩阵----一个隐藏层和一个输出层。这两层都会有一个300x10000=3000000的weight矩阵。 在如此大的神经网络上进行梯度下降是非常慢的,更加严重的是,我们需要大量训练数据去调整weights和避免over-fitti
645 0
Word2Vec教程-Negative Sampling 负采样
|
机器学习/深度学习 算法
Matrix Factorization
Matrix Factorization ①linearNetwork Hypothesis 机器学习的作用就是要从一堆数据中学习到学习到某种能力,然后用这种skill来预测未来的结果。
1026 0
|
算法 计算机视觉 知识图谱
|
传感器 机器人 定位技术
(转) How a Kalman filter works, in pictures
  How a Kalman filter works, in pictures   I have to tell you about the Kalman filter, because what it does is pretty damn amazing.
1237 0