Netty网络编程之NIO概览与简单应用

简介:

1.关于NIO

Java NIO即Java Non-blocking IO(Java非阻塞I/O),是Jdk1.4之后增加的一套操作I/O工具包,又被叫做Java New IO。

(1)Reactor模式
Reactor即反应器,就是我们将事件注册到Reactor中,当有相应的事件发生时,Reactor便会告知我们有哪些事件发生了,我们再根据具体的事件去做相应的处理。在NIO里主要是Selector多路复用模型。

(2)BIO(同步阻塞IO)和NIO的区别

BIO在调用read/write的时候会阻塞线程,也就是就算某个时刻你的socket并没有数据需要传输,
但是你的socket线程却仍然会被阻塞在read/write方法上,所以BIO是一个socket连接一个线程。
NIO与BIO不同,它主要依靠事件监听反应器进行工作,一个监听器可以监听好几个socket连接,只有在socket有事件发生(如读写数据,连接到达等)的时候才进行事件分发,
开启线程去处理事件(一个请求一个线程),所以在高并发的时候NIO是优于BIO的。
并且NIO有了缓冲区的概念,不管是File IO还是Socket IO都是在和Buffer相互读取,
NIO可以先将通道数据读到缓冲区中再进行操作,避免了逐字节或逐行读取的性能开销。

NIO主要可以分为四个模块,分别是Buffer(数据缓冲区),Channel(数据通道),Selector(监听器),Charset(字符集)

2.Buffer(数据缓冲区)

缓冲区(Buffer)就是在内存中预留指定字节数的存储空间用来对输入/输出(I/O)的数据作临时存储,这部分预留的内存空间就叫做缓冲区;

在Java NIO中,缓冲区的作用也是用来临时存储数据,可以理解为是I/O操作中数据的中转站。
缓冲区直接为通道(Channel)服务,写入数据到通道或从通道读取数据。

java.nio.Buffer是一个抽象类,直接继承Buffer的缓冲区类有七种:
ByteBuffer,CharBuffer,DoubleBuffer,FloatBuffer,IntBuffer,LongBuffer,ShortBuffer。
其中MappedByteBuffer继承ByteBuffer,专门用于内存映射,可以处理大文件读写等。


Buffer有四个属性,

1
2
3
4
private  int  mark = - 1 ;
private  int  position =  0 ;
private  int  limit;
private  int  capacity; 

Capacity 容量,即可以容纳的最大数据量;在缓冲区创建时被设定并且不能改变
Limit 上界,缓冲区中当前数据量
Position 位置,下一个要被读或写的元素的索引
Mark 标记,调用mark()来设置mark=position,再调用reset()可以让position恢复到标记的位置即position=mark

具体的操作方法主要有clear(清空缓冲区),flip(把缓冲区状态改为写状态),put(向缓冲区写入数据),get(从缓冲区读取数据)。

3.Channel(数据通道)

Channel相当于BIO里面的Stream(数据流),但Channel与Stream不同,Channel是双向的,
可以向通道两边传输数据,而不用像BIO那样要专门建立一个输入流和一个输出流。
I/O可以分为文件IO和流IO,那么Channel对应的就可以分为文件通道(FileChannel)和流通道(流通道就是套接字通道,SocketChannel),NIO中Channel接口主要的通道实现类有以下几种:

FileChannel 文件通道,用于操作文件I/O
SocketChannel 套接字通道,用于TCP协议,客户端连接服务器后,
服务器和客户端都会有一个SocketChannel,就可以互相发送数据了
ServerSocketChannel 服务器套接字通道,用于TCP连接响应客户端连接

通道可以以阻塞(blocking)或非阻塞(non-blocking)模式运行,阻塞模式会一直等待某个操作直到返回结果;非阻塞不会一直等待,要么返回null,要么返回执行完的结果。


4.Selector(监听器)

Selector是NIO的核心,

(1)选择器的创建
java.nio.channels.Selector提供了一系列的静态方法,可以直接调用,

1
2
//创建选择器
Selector sle =Selector.open();

Selector(选择器)提供了下面方法:

open():打开一个选择器
isOpen():检查一个选择器实例是否打开
provider():返回一个SelectorProvider
keys():返回注册键集合
selectedKeys():返回已选择键集合
selectNow():立刻执行选择,非阻塞,若没有已准备好的通道则立即返回0
select(long timeout):执行选择,超过指定毫秒数则返回
select():执行选择,会一直阻塞直到有准备就绪的通道
wakeup():停止选择
close():关闭选择器

(2)轮询获取注册到选择器中通道感兴趣的操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
//创建选择器
             Selector sle =Selector.open();
             //创建socket服务器通道
             ServerSocketChannel socketChn=ServerSocketChannel.open();
             /**
              * 绑定端口
              * InetSocketAddress是SocketAddress的子类
              */
             socketChn.socket().bind( new  InetSocketAddress( 65535 ));
             //设置是否非阻塞
             socketChn.configureBlocking( false );
             /**
              * 将通道注册到选择器,指定通道兴趣是等待接收连接 
              * NIO中定义了4中可选择操作:OP_READ(读)、OP_WRITE(写)、OP_CONNECT(连接)、OP_ACCEPT(接受),
              * 这些常量在SelectionKey中定义
              */
             SelectionKey key = socketChn.register(sle, SelectionKey.OP_ACCEPT);
             //使用while循环轮询获取注册到选择器中通道感兴趣的操作
             while ( true ){
                 //选择注册到选择器中通道感兴趣的键,此方法是阻塞的,直到有感兴趣的事件发生
//              int n=sle.select();
                 //立即查询,非阻塞
                 int  n=sle.selectNow();
                  Iterator<SelectionKey> iter = sle.selectedKeys().iterator(); 
                     while  (iter.hasNext()) { 
                         SelectionKey keyy = iter.next(); 
                         iter.remove(); 
                         // ...... 
                     }
                     //close()方法可以关闭选择器
                     sle.close();
                 }  


(3)poll和epoll 选择器的内部实现

选择器为通道服务,通道事先告诉选择器:“我对某些事件感兴趣,如可读、可写等“,

选择器在接受了一个或多个通道的委托后,开始选择工作,它的选择工作就完全交给操作系统,linux下即为poll或epoll。

5.Charset(字符集)

主要是指java.nio.charset包下的一系列工具类,

NIO提供了CharsetDecoder和CharsetEncoder进行字符集的编码和解码。

 



本文转自邴越博客园博客,原文链接:http://www.cnblogs.com/binyue/p/3857911.html,如需转载请自行联系原作者

相关文章
|
4天前
|
人工智能 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基础原理、关键技术及其在未来通信领域的应用前景。通过分析量子纠缠、量子叠加等核心概念,揭示了量子互联网相较于传统互联网的优势所在。同时,文章还讨论了当前量子互联网领域面临的技术挑战和解决方案,为读者呈现了一个关于量子互联网的全面且深入的视角。
|
18小时前
|
域名解析 存储 网络协议
NIO实现聊天室之:一切都要从网络编程的基础开始聊起!
NIO实现聊天室之:一切都要从网络编程的基础开始聊起!
|
2天前
|
安全 网络安全 区块链
网络安全与信息安全:构建数字世界的防线在当今数字化时代,网络安全已成为维护个人隐私、企业机密和国家安全的重要屏障。随着网络攻击手段的不断升级,从社交工程到先进的持续性威胁(APT),我们必须采取更加严密的防护措施。本文将深入探讨网络安全漏洞的形成原因、加密技术的应用以及提高公众安全意识的重要性,旨在为读者提供一个全面的网络安全知识框架。
在这个数字信息日益膨胀的时代,网络安全问题成为了每一个网民不可忽视的重大议题。从个人信息泄露到企业数据被盗,再到国家安全受到威胁,网络安全漏洞如同隐藏在暗处的“黑洞”,时刻准备吞噬掉我们的信息安全。而加密技术作为守护网络安全的重要工具之一,其重要性不言而喻。同时,提高公众的安全意识,也是防范网络风险的关键所在。本文将从网络安全漏洞的定义及成因出发,解析当前主流的加密技术,并强调提升安全意识的必要性,为读者提供一份详尽的网络安全指南。
|
10天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
11天前
|
SQL 安全 算法
网络安全的盾牌与剑:漏洞防御与加密技术的实战应用
【9月更文挑战第30天】在数字时代的浪潮中,网络安全成为守护信息资产的关键防线。本文深入浅出地探讨了网络安全中的两大核心议题——安全漏洞与加密技术,并辅以实例和代码演示,旨在提升公众的安全意识和技术防护能力。
|
12天前
|
机器学习/深度学习 算法 搜索推荐
图神经网络综述:模型与应用
图神经网络综述:模型与应用
|
16小时前
|
机器学习/深度学习 数据采集 前端开发
从零开始学机器学习——网络应用
从零开始学机器学习——网络应用
|
2天前
|
存储 搜索推荐 生物认证
信息搜集:网络空间搜索引擎语法及API的应用(一)
信息搜集:网络空间搜索引擎语法及API的应用(一)
|
2天前
|
JSON 搜索推荐 IDE
信息搜集:网络空间搜索引擎语法及API的应用(二)
信息搜集:网络空间搜索引擎语法及API的应用(二)
12 0
|
2天前
|
JSON API 开发者
深入解析Python网络编程与Web开发:urllib、requests和http模块的功能、用法及在构建现代网络应用中的关键作用
深入解析Python网络编程与Web开发:urllib、requests和http模块的功能、用法及在构建现代网络应用中的关键作用
8 0