排序四 希尔排序

简介:

要点

希尔(Shell)排序又称为缩小增量排序,它是一种插入排序。它是直接插入排序算法的一种威力加强版

该方法因DLShell1959年提出而得名。

希尔排序的基本思想是:

把记录按步长 gap 分组,对每组记录采用直接插入排序方法进行排序。
随着步长逐渐减小,所分成的组包含的记录越来越多,当步长的值减小到 1 时,整个数据合成为一组,构成一组有序记录,则完成排序。

我们来通过演示图,更深入的理解一下这个过程。 

在上面这幅图中:

初始时,有一个大小为 10 的无序序列。

第一趟排序中,我们不妨设 gap1 = N / 2 = 5,即相隔距离为 5 的元素组成一组,可以分为 5 组。

接下来,按照直接插入排序的方法对每个组进行排序。

第二趟排序中,我们把上次的 gap 缩小一半,即 gap2 = gap1 / 2 = 2 (取整数)。这样每相隔距离为 2 的元素组成一组,可以分为 2 组。

按照直接插入排序的方法对每个组进行排序。

第三趟排序中,再次把 gap 缩小一半,即gap3 = gap2 / 2 = 1 这样相隔距离为 1 的元素组成一组,即只有一组。

按照直接插入排序的方法对每个组进行排序。此时,排序已经结束

需要注意一下的是,图中有两个相等数值的元素 5  5 。我们可以清楚的看到,在排序过程中,两个元素位置交换了

所以,希尔排序是不稳定的算法。

核心代码

复制代码
public  void shellSort( int[] list) {
     int gap = list.length / 2;
 
     while (1 <= gap) {
         //  把距离为 gap 的元素编为一个组,扫描所有组
         for ( int i = gap; i < list.length; i++) {
             int j = 0;
             int temp = list[i];
 
             //  对距离为 gap 的元素组进行排序
             for (j = i - gap; j >= 0 && temp < list[j]; j = j - gap) {
                list[j + gap] = list[j];
            }
            list[j + gap] = temp;
        }
 
        System.out.format("gap = %d:\t", gap);
        printAll(list);
        gap = gap / 2;  //  减小增量
    }
}
复制代码


算法分析

希尔排序的算法性能

排序类别

排序方法

时间复杂度

空间复杂度

稳定性

复杂性

平均情况

最坏情况

最好情况

插入排序

希尔排序

O(Nlog2N)

O(N1.5)

 

O(1)

不稳定

较复杂

 

时间复杂度

步长的选择是希尔排序的重要部分。只要最终步长为1任何步长序列都可以工作。

算法最开始以一定的步长进行排序。然后会继续以一定步长进行排序,最终算法以步长为1进行排序。当步长为1时,算法变为插入排序,这就保证了数据一定会被排序。
Donald Shell 
最初建议步长选择为N/2并且对步长取半直到步长达到1。虽然这样取可以比O(N2)类的算法(插入排序)更好,但这样仍然有减少平均时间和最差时间的余地。可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就

不会以如此短的时间完成排序了。

步长序列

最坏情况下复杂度

已知的最好步长序列是由Sedgewick提出的(1, 5, 19, 41, 109,...),该序列的项来自

这两个算式。

这项研究也表明“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长序列的希尔排序比插入排序和堆排序都要快,甚至在小数组中比快速排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。

 

算法稳定性

由上文的希尔排序算法演示图即可知,希尔排序中相等数据可能会交换位置,所以希尔排序是不稳定的算法。

 

直接插入排序和希尔排序的比较

直接插入排序是稳定的;而希尔排序是不稳定的。

直接插入排序更适合于原始记录基本有序的集合。

希尔排序的比较次数和移动次数都要比直接插入排序少,当N越大时,效果越明显。   

在希尔排序中,增量序列gap的取法必须满足:最后一个步长必须是 1  

直接插入排序也适用于链式存储结构;希尔排序不适用于链式结构

 

完整参考代码

JAVA版本

代码实现

范例代码中的初始序列和本文图示中的序列完全一致。

  View Code


运行结果

排序前:      9    1    2    5    7    4    8    6    3    5    
gap = 5:    4    1    2    3    5    9    8    6    5    7    
gap = 2:    2    1    4    3    5    6    5    7    8    9    
gap = 1:    1    2    3    4    5    5    6    7    8    9    
排序后:      1    2    3    4    5    5    6    7    8    9   

本文转自静默虚空博客园博客,原文链接:http://www.cnblogs.com/jingmoxukong/p/4303279.html,如需转载请自行联系原作者

相关文章
|
7月前
|
搜索推荐 算法 Shell
排序——插入排序
排序——插入排序
50 0
|
7月前
|
算法 搜索推荐
排序——选择排序
排序——选择排序
76 0
|
存储 搜索推荐 测试技术
排序篇(一)----插入排序
排序篇(一)----插入排序
54 0
|
算法 搜索推荐 索引
排序篇(二)----选择排序
排序篇(二)----选择排序
38 0
|
存储 搜索推荐 测试技术
排序(1)之插入排序
从今天小编就开始给大家介绍排序的内容,对于排序内容我们一共分,插入,选择,交换,归并这几个大类,那么今天小编给大家带来的就是插入排序
105 0
|
搜索推荐
排序(2)之选择排序
继插入排序后,今天小编就给大家另一个模块,选择排序的学习,那么话不多说,我们直接进入正题。
122 0
|
移动开发 算法 Shell
算法之排序5——希尔排序
依次比较待插入元素 i 和分组内另一个元素,就需要用到for循环语句;当h = 5 时,a[5]恰好是数组内第6个元素,也就是第一个待插入的元素,所以初始条件是 i = h,待插入的最后一个元素就是数组内最后一个元素,即终止条件为 i < a.length
140 0
|
索引
掌握常见的几种排序-选择排序
选择排序是一种简单的排序,时间复杂度是O(n^2),在未排序的数组中找到最小的那个数字,然后将其放到起始位置,从剩下未排序的数据中继续寻找最小的元素,将其放到已排序的末尾,以此类推,直到所有元素排序结束为止。
123 0
掌握常见的几种排序-选择排序
|
算法 搜索推荐 Java
排序:希尔排序(算法)
(注:如果想更好的理解希尔排序,请先看看我的上一篇博客插入排序,希望会对你有帮助。)
339 0
排序:希尔排序(算法)
|
算法 Shell
排序——希尔排序
排序——希尔排序
134 0
排序——希尔排序