UVA 之10010 - Where's Waldorf?

简介:

  Where's Waldorf? 

Given a  m  by  n  grid of letters, (  $1 \leq m,n \leq 20$ ), and a list of words, find the location in the grid at which the word can be found. A word matches a straight, uninterrupted line of letters in the grid. A word can match the letters in the grid regardless of case (i.e. upper and lower case letters are to be treated as the same). The matching can be done in any of the eight directions either horizontally, vertically or diagonally through the grid.

Input 

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input begins with a pair of integers, m followed by n$1 \leqm,n \leq 50$ in decimal notation on a single line. The next m lines contain n letters each; this is the grid of letters in which the words of the list must be found. The letters in the grid may be in upper or lower case. Following the grid of letters, another integer k appears on a line by itself ( $1 \leq k \leq 20$). The next k lines of input contain the list of words to search for, one word per line. These words may contain upper and lower case letters only (no spaces, hyphens or other non-alphabetic characters).

Output 

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

For each word in the word list, a pair of integers representing the location of the corresponding word in the grid must be output. The integers must be separated by a single space. The first integer is the line in the grid where the first letter of the given word can be found (1 represents the topmost line in the grid, and m represents the bottommost line). The second integer is the column in the grid where the first letter of the given word can be found (1 represents the leftmost column in the grid, and n represents the rightmost column in the grid). If a word can be found more than once in the grid, then the location which is output should correspond to the uppermost occurence of the word (i.e. the occurence which places the first letter of the word closest to the top of the grid). If two or more words are uppermost, the output should correspond to the leftmost of these occurences. All words can be found at least once in the grid.

Sample Input 

1

8 11
abcDEFGhigg
hEbkWalDork
FtyAwaldORm
FtsimrLqsrc
byoArBeDeyv
Klcbqwikomk
strEBGadhrb
yUiqlxcnBjf
4
Waldorf
Bambi
Betty
Dagbert

Sample Output 

2 5
2 3
1 2
7 8



Miguel Revilla 
2000-08-22

【大意】:

输入:

给你一个由字母组成的网格,M行N列。寻找一个单词在网格中的位置。一个单词匹配网格中联系不间断的字母。可以沿任意方向匹配,一共可以匹配八个方向。忽略大小写。

需要匹配的字符串有K个。

输出:

每组输出之间都一行空行。

m nm代表匹配的最上面的行

      n代表匹配的最下面的行

如果结果有多个,只输出匹配串。要求:匹配串的第一个字母必须是最高最左的。结果至少有一个。

【代码】:

[cpp]  view plain copy
  1. /********************************* 
  2. *   日期:2013-4-23 
  3. *   作者:SJF0115 
  4. *   题号: 题目10010 - Where's Waldorf? 
  5. *   来源:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=12&page=show_problem&problem=951 
  6. *   结果:AC 
  7. *   来源:UVA 
  8. *   总结: 
  9. **********************************/  
  10. #include<stdio.h>  
  11. #include<string.h>  
  12.   
  13. char Matrix[51][51];  
  14. char str[21],temp[21];  
  15. int StartR,StartC;  
  16. //M行 N列  
  17. int Match(int M,int N,int &StartR,int &StartC){  
  18.     int i,j,k,flag;  
  19.     StartR = 51,StartC = 51;  
  20.     int len = strlen(str);  
  21.     for(i = 0;i < M;i++){  
  22.         for(j = 0;j < N;j++){  
  23.             flag = 1;  
  24.             //left - right  
  25.             if(j + len <= N){  
  26.                 flag = 0;  
  27.                 for(k = 0;k < len;k++){  
  28.                     if(str[k] != Matrix[i][j+k]){  
  29.                         flag = 1;  
  30.                         break;  
  31.                     }  
  32.                 }  
  33.                 if(flag == 0){  
  34.                     if(StartR >  i+1){  
  35.                         StartR = i+1;  
  36.                         StartC = j+1;  
  37.                     }  
  38.                     else if(StartR ==  i+1 && StartC > j+1){  
  39.                         StartR = i+1;  
  40.                         StartC = j+1;  
  41.                     }  
  42.                 }  
  43.             }  
  44.             //right - left  
  45.             if(j - len + 1>= 0){  
  46.                 flag = 0;  
  47.                 for(k = 0;k < len;k++){  
  48.                     if(str[k] != Matrix[i][j-k]){  
  49.                         flag = 1;  
  50.                         break;  
  51.                     }  
  52.                 }  
  53.                 if(flag == 0){  
  54.                     if(StartR >  i+1){  
  55.                         StartR = i+1;  
  56.                         StartC = j+1;  
  57.                     }  
  58.                     else if(StartR ==  i+1 && StartC > j+1){  
  59.                         StartR = i+1;  
  60.                         StartC = j+1;  
  61.                     }  
  62.                 }  
  63.             }  
  64.             //up - down  
  65.             if(i + len <= M){  
  66.                 flag = 0;  
  67.                 for(k = 0;k < len;k++){  
  68.                     if(str[k] != Matrix[i+k][j]){  
  69.                         flag = 1;  
  70.                         break;  
  71.                     }  
  72.                 }  
  73.                 if(flag == 0){  
  74.                     if(StartR >  i+1){  
  75.                         StartR = i+1;  
  76.                         StartC = j+1;  
  77.                     }  
  78.                     else if(StartR ==  i+1 && StartC > j+1){  
  79.                         StartR = i+1;  
  80.                         StartC = j+1;  
  81.                     }  
  82.                 }  
  83.             }  
  84.             //down - up  
  85.             if(i - len + 1 >= 0){  
  86.                 flag = 0;  
  87.                 for(k = 0;k < len;k++){  
  88.                     if(str[k] != Matrix[i-k][j]){  
  89.                         flag = 1;  
  90.                         break;  
  91.                     }  
  92.                 }  
  93.                 if(flag == 0){  
  94.                     if(StartR >  i+1){  
  95.                         StartR = i+1;  
  96.                         StartC = j+1;  
  97.                     }  
  98.                     else if(StartR ==  i+1 && StartC > j+1){  
  99.                         StartR = i+1;  
  100.                         StartC = j+1;  
  101.                     }  
  102.                 }  
  103.             }  
  104.             //right - up  
  105.             if(j + len <= N && i - len + 1 >= 0){  
  106.                 flag = 0;  
  107.                 for(k = 0;k < len;k++){  
  108.                     if(str[k] != Matrix[i-k][j+k]){  
  109.                         flag = 1;  
  110.                         break;  
  111.                     }  
  112.                 }  
  113.                 if(flag == 0){  
  114.                     if(StartR >  i+1){  
  115.                         StartR = i+1;  
  116.                         StartC = j+1;  
  117.                     }  
  118.                     else if(StartR ==  i+1 && StartC > j+1){  
  119.                         StartR = i+1;  
  120.                         StartC = j+1;  
  121.                     }  
  122.                 }  
  123.             }  
  124.             //right - down  
  125.             if(j + len <= N && i + len <= M){  
  126.                 flag = 0;  
  127.                 for(k = 0;k < len;k++){  
  128.                     if(str[k] != Matrix[i+k][j+k]){  
  129.                         flag = 1;  
  130.                         break;  
  131.                     }  
  132.                 }  
  133.                 if(flag == 0){  
  134.                     if(StartR >  i+1){  
  135.                         StartR = i+1;  
  136.                         StartC = j+1;  
  137.                     }  
  138.                     else if(StartR ==  i+1 && StartC > j+1){  
  139.                         StartR = i+1;  
  140.                         StartC = j+1;  
  141.                     }  
  142.                 }  
  143.             }  
  144.             //left - up  
  145.             if(j - len + 1 >= 0 && i - len + 1 >= 0){  
  146.                 flag = 0;  
  147.                 for(k = 0;k < len;k++){  
  148.                     if(str[k] != Matrix[i-k][j-k]){  
  149.                         flag = 1;  
  150.                         break;  
  151.                     }  
  152.                 }  
  153.                 if(flag == 0){  
  154.                     if(StartR >  i+1){  
  155.                         StartR = i+1;  
  156.                         StartC = j+1;  
  157.                     }  
  158.                     else if(StartR ==  i+1 && StartC > j+1){  
  159.                         StartR = i+1;  
  160.                         StartC = j+1;  
  161.                     }  
  162.                 }  
  163.             }  
  164.             //left - down  
  165.             if(j - len + 1 >= 0 && i + len <= M){  
  166.                 flag = 0;  
  167.                 for(k = 0;k < len;k++){  
  168.                     if(str[k] != Matrix[i-k][j+k]){  
  169.                         flag = 1;  
  170.                         break;  
  171.                     }  
  172.                 }  
  173.                 if(flag == 0){  
  174.                     if(StartR >  i+1){  
  175.                         StartR = i+1;  
  176.                         StartC = j+1;  
  177.                     }  
  178.                     else if(StartR ==  i+1 && StartC > j+1){  
  179.                         StartR = i+1;  
  180.                         StartC = j+1;  
  181.                     }  
  182.                 }  
  183.             }  
  184.         }//for j  
  185.     }//for i  
  186.     return 0;  
  187. }  
  188.   
  189. int main (){  
  190.     int i,j,Case,k,M,N;  
  191.     //freopen("C:\\Users\\XIAOSI\\Desktop\\acm.txt","r",stdin);    
  192.     while(scanf("%d",&Case) != EOF){  
  193.         while(Case--){  
  194.             scanf("%d %d",&M,&N);  
  195.             //输入字符矩阵  
  196.             for(i = 0;i < M;i++){  
  197.                 scanf("%s",temp);  
  198.                 for(j = 0;j < N;j++){  
  199.                     Matrix[i][j] = temp[j];  
  200.                     //转换为小写  
  201.                     if(Matrix[i][j] >= 'A' && Matrix[i][j] <= 'Z'){  
  202.                         Matrix[i][j] = Matrix[i][j] - 'A' + 'a';  
  203.                     }  
  204.                 }  
  205.             }  
  206.             scanf("%d",&k);  
  207.             //待匹配串  
  208.             for(i = 0;i < k;i++){  
  209.                 scanf("%s",str);  
  210.                 int len = strlen(str);  
  211.                 //转换为小写  
  212.                 for(j = 0;j < len;j++){  
  213.                     if(str[j] >= 'A' && str[j] <= 'Z'){  
  214.                         str[j] = str[j] - 'A' + 'a';  
  215.                     }  
  216.                 }  
  217.                 //printf("%s",str);  
  218.                 Match(M,N,StartR,StartC);  
  219.                 printf("%d %d\n",StartR,StartC);  
  220.             }  
  221.             //每组测试之间有空行  
  222.             if(Case){  
  223.                 printf("\n");  
  224.             }  
  225.         }  
  226.     }  
  227.     return 0;  
  228. }  
  229.   
  230.       
目录
相关文章
uva 10340 all in all
输入两个字符串s和t,判断是否可以从t中删除0个或多个字符(其他字符顺序不变),得到字符串是。
45 0
uva10112 Myacm Triangles
uva10112 Myacm Triangles
47 0
uva10152 ShellSort
uva10152 ShellSort
66 0
UVa 10082 WERTYU
UVa 10082 WERTYU
132 0
UVa 10082 WERTYU
Problem Description A common typing error is to place the hands on the keyboard one row to the right of the correct position.
893 0
|
C++
UVA 之10010 - Where's Waldorf?
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/SunnyYoona/article/details/24863879 ...
716 0
|
机器学习/深度学习
uva 11538 Chess Queen
点击打开链接 题意:给定一个n*m的矩阵,问有多少种方法放置两个相互攻击的皇后?规定在同一行同一列和同对角线的能够相互攻击 思路: 1 先考虑同一行的情况,n行就有n种情况,每一行有m*(m-1)种,总的是n*m*(m-1); 2 考虑同...
826 0
|
机器学习/深度学习 人工智能
uva 10870 Recurrences
点击打开uva 10870 思路:构造矩阵+矩阵快速幂 分析: 1 题目给定f(n)的表达式 f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n -3) + .
738 0

热门文章

最新文章