Question2Answer安装

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

Question2Answer的安装过程很简单,只需要几分钟的时间你就可以有一个强大的问答系统

安装要求

  • Web服务器(比如Apache)
  • PHP 4.3 或更高版本 (最好是PHP 5.x )
  • MySQL 4.1 或更高版本 (或 MySQL 5.x)

第一次安装(无SSO-单点登陆)

  • 下载最新版的Question2Answer,用winzip或其他工具解压(shell中的unzip命令)
  • 下载中文语言包,确保解压后的目录名是zh-cn,并将其放入qa-lang目录
  • 将解压的根目录中的qa-config-example.php重命名为qa-config.php用编辑器(推荐免费好用的Notepad++)打开qa-config.php填入相关的数据库信息
    1
    2
    3
    4
    5
    //多数情况下填写localhost 或 127.0.0.1即可
    define('QA_MYSQL_HOSTNAME',  '这里填数据库服务器地址');  
    define('QA_MYSQL_USERNAME','这里填数据库用户名');
    define('QA_MYSQL_PASSWORD','这里填数据库密码');
    define('QA_MYSQL_DATABASE',  '这里填数据库名称');
  • 将所有的解压文件上传到服务器
  • 用浏览器打开你绑定的域名(如http://q2achina.sinaapp.com),根据页面的提示完成Question2Answer的安装

本文转自博客园知识天地的博客,原文链接:Question2Answer安装,如需转载请自行联系原博主。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
机器学习/深度学习 编解码 人工智能
Reading Notes: Human-Computer Interaction System: A Survey of Talking-Head Generation
由于人工智能的快速发展,虚拟人被广泛应用于各种行业,包括个人辅助、智能客户服务和在线教育。拟人化的数字人可以快速与人接触,并在人机交互中增强用户体验。因此,我们设计了人机交互系统框架,包括语音识别、文本到语音、对话系统和虚拟人生成。接下来,我们通过虚拟人深度生成框架对Talking-Head Generation视频生成模型进行了分类。同时,我们系统地回顾了过去五年来在有声头部视频生成方面的技术进步和趋势,强调了关键工作并总结了数据集。 对于有关于Talking-Head Generation的方法,这是一篇比较好的综述,我想着整理一下里面比较重要的部分,大概了解近几年对虚拟人工作的一些发展和
|
自然语言处理 数据挖掘 数据处理
【提示学习】Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文基于PVP,提出PET与iPET,但是关注点在利用半监督扩充自己的数据集,让最终模型学习很多样本,从而达到好效果。
130 0
|
数据挖掘
【提示学习】Prompt Tuning for Multi-Label Text Classification: How to Link Exercises to Knowledge Concept
文章这里使用的是BCEWithLogitsLoss,它适用于多标签分类。即:把[MASK]位置预测到的词表的值进行sigmoid,取指定阈值以上的标签,然后算损失。
|
自然语言处理 数据挖掘 知识图谱
【提示学习】Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classific
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文是在Verbalizer(标签映射器)方面做出的创新。   文章思路是数据增强+去噪,不过数据增强在于verbalizer对于label space至expanding word space的映射,引入外部的扩展标签词集,辅助分类,去噪并不新颖,就是在细化两个场景,zeroshot滤掉扩展标签词集的低频词,并上下文校验。fewshot则是引入可学习权值,减小噪声影响。
184 0
|
机器学习/深度学习 数据采集 存储
Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction论文解读
大多数现有的事件抽取(EE)方法只提取句子范围内的事件论元。然而,此类句子级事件抽取方法难以处理来自新兴应用程序(如金融、立法、卫生等)的大量文件
122 0
|
机器学习/深度学习 自然语言处理 算法
Retrieval-Augmented Generative Question Answering for Event Argument Extraction论元解读
长期以来,事件论元抽取一直被研究为基于抽取的方法的序列预测问题,孤立地处理每个论元。尽管最近的工作提出了基于生成的方法来捕获交叉论元依赖性,但它们需要生成和后处理复杂的目标序列(模板)。
186 0
|
存储 移动开发 自然语言处理
Document-Level event Extraction via human-like reading process 论文解读
文档级事件抽取(DEE)特别困难,因为它提出了两个挑战:论元分散和多事件。第一个挑战意味着一个事件记录的论元可能存在于文档中的不同句子中
103 0
|
机器学习/深度学习 存储 人工智能
Event Extraction by Answering (Almost) Natural Questions论文解读
事件抽取问题需要检测事件触发词并抽取其相应的论元。事件论元抽取中的现有工作通常严重依赖于作为预处理/并发步骤的实体识别,这导致了众所周知的错误传播问题。
143 0
《Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data》电子版地址
Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data
81 0
《Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data》电子版地址