开发者社区> 技术小哥哥> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

[BigData]关于Hadoop学习笔记第二天(PPT总结)(一)

简介:
+关注继续查看

Plan:

复制代码
分布式文件系统与HDFS
HDFS体系结构与基本概念
HDFS的shell操作
java接口及常用api
HADOOP的RPC机制
HDFS源码分析
远程debug
复制代码

自己设计一分布式文件系统?

Distributed File System

1.数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统 。
2.是一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间。
3.通透性。让实际上是通过网络来访问文件的动作,由程序与用户看来,就像是访问本地的磁盘一般。
4.容错。即使系统中有某些节点脱机,整体来说系统仍然可以持续运作而不会有数据损失。
5.分布式文件管理系统很多,hdfs只是其中一种。适用于一次写入多次查询的情况,不支持并发写情况,小文件不合适。
HDFS的Shell
1.调用文件系统(FS)Shell命令应使用 bin/hadoop fs 的形式。
2.所有的FS shell命令使用URI路径作为参数。

 URI格式是scheme://authority/path。HDFS的scheme是hdfs,对本地文件系统,scheme是file。其中scheme和authority参数都是可选的,如果未加指定,就会使用配置中指定的默认scheme。

 例如:/parent/child可以表示成hdfs://namenode:namenodePort/parent/child,或者更简单的/parent/child(假设配置文件是namenode:namenodePort)

3.大多数FS Shell命令的行为和对应的Unix Shell命令类似。
HDFS fs命令
-help [cmd]  //显示命令的帮助信息
-ls(r) <path>  //显示当前目录下所有文件
-du(s) <path>  //显示目录中所有文件大小
-count[-q] <path>  //显示目录中文件数量
-mv <src> <dst>  //移动多个文件到目标目录
-cp <src> <dst>  //复制多个文件到目标目录
-rm(r)  //删除文件(夹)
-put <localsrc> <dst>  //本地文件复制到hdfs
-copyFromLocal  //同put
-moveFromLocal  //从本地文件移动到hdfs
-get [-ignoreCrc] <src> <localdst>  //复制文件到本地,可以忽略crc校验
-getmerge <src> <localdst>  //将源目录中的所有文件排序合并到一个文件中
-cat <src>  //在终端显示文件内容
-text <src>  //在终端显示文件内容
-copyToLocal [-ignoreCrc] <src> <localdst>  //复制到本地
-moveToLocal <src> <localdst>
-mkdir <path>  //创建文件夹
-touchz <path>  //创建一个空文件
HDFS的Shell命令练习
#hadoop fs -ls /  查看HDFS根目录
#hadoop fs -mkdir /test 在根目录创建一个目录test

    #hadoop fs -mkdir /test1 在根目录创建一个目录test1

#hadoop fs -put ./test.txt /test 
或#hadoop fs -copyFromLocal ./test.txt /test

    #hadoop fs -get /test/test.txt .

   或#hadoop fs -getToLocal /test/test.txt .

#hadoop fs -cp /test/test.txt /test1
#hadoop fs -rm /test1/test.txt
#hadoop fs -mv /test/test.txt /test1
#hadoop fs -rmr /test1   
HDFS架构
NameNode
DataNode
Secondary NameNode
HDFS Architecture
元数据存储细节
 
NameNode
1.是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。
2.文件包括:
①fsimage:元数据镜像文件。存储某一时段NameNode内存元数据信息。(hdfs-site.xml的dfs.name.dir属性)
②edits:操作日志文件。
③fstime:保存最近一次checkpoint的时间
3.以上这些文件是保存在linux的文件系统中。
NameNode的工作特点 
1.Namenode始终在内存中保存metedata,用于处理“读请求”
2.到有“写请求”到来时,namenode会首先写editlog到磁盘,即向edits文件中写日志,成功返回后,才会修改内存,并且向客户端返回
3.Hadoop会维护一个fsimage文件,也就是namenode中metedata的镜像,但是fsimage不会随时与namenode内存中的metedata保持一致,而是每隔一段时间通过合并edits文件来更新内容。Secondary namenode就是用来合并fsimage和edits文件来更新NameNode的metedata的。
SecondaryNameNode
1.HA的一个解决方案。但不支持热备。配置即可。
2.执行过程:从NameNode上下载元数据信息(fsimage,edits),然后把二者合并,生成新的fsimage,在本地保存,并将其推送到NameNode,替换旧的fsimage.
3.默认在安装在NameNode节点上,但这样...不安全!
secondary namenode的工作流程
1.secondary通知namenode切换edits文件
2.secondary从namenode获得fsimage和edits(通过http)
3.secondary将fsimage载入内存,然后开始合并edits
4.secondary将新的fsimage发回给namenode
5.namenode用新的fsimage替换旧的fsimage
什么时候checkpiont 
1.fs.checkpoint.period 指定两次checkpoint的最大时间间隔,默认3600秒。
2.fs.checkpoint.size    规定edits文件的最大值,一旦超过这个值则强制checkpoint,不管是否到达最大时间间隔。默认大小是64M。
 
 
Datanode
1.提供真实文件数据的存储服务。
2.文件块(block):最基本的存储单位。对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block。HDFS默认Block大小是128MB,以一个256MB文件,共有256/128=2个Block.

dfs.block.size

3.不同于普通文件系统的是,HDFS中,如果一个文件小于一个数据块的大小,并不占用整个数据块存储空间
4.Replication。多复本。默认是三个。

hdfs-site.xml的dfs.replication属性

Shell命令练习:验证块大小
1.方法:上传大于128MB的文件,观察块大小
2.验证:使用 http://hadoop0:50070 观察

HDFS的java访问接口——FileSystem

•写文件 create
•读取文件 open
•删除文件delete
•创建目录 mkdirs
•删除文件或目录 delete
•列出目录的内容 listStatus
•显示文件系统的目录和文件的元数据信息 getFileStatus

 HDFS的FileSystem读取文件

复制代码
    private static FileSystem getFileSystem() throws URISyntaxException,
            IOException {
        Configuration conf = new Configuration();
        URI uri = new URI("hdfs://hadoop240:9000");
        final FileSystem fileSystem = FileSystem.get(uri , conf);
        return fileSystem;
    }
    /**
     * 读取文件,调用fileSystem的open(path)
     * @throws Exception
     */
    private static void readFile() throws Exception {
        FileSystem fileSystem = getFileSystem();
        FSDataInputStream openStream = fileSystem.open(new Path("hdfs://itcast0106:9000/aaa"));
        IOUtils.copyBytes(openStream, System.out, 1024, false);
        IOUtils.closeStream(openStream);
    }
复制代码

HDFS的FileSystem目录

复制代码
    /**
     * 创建目录,调用fileSystem的mkdirs(path)
     * @throws Exception
     */
    private static void mkdir() throws Exception {
        FileSystem fileSystem = getFileSystem();
        fileSystem.mkdirs(new Path("hdfs://itcast0106:9000/bbb"));
    }
    /**
     * 删除目录,调用fileSystem的deleteOnExit(path)
     * @throws Exception
     */
    private static void rmdir() throws Exception {
        FileSystem fileSystem = getFileSystem();
        fileSystem.delete(new Path("hdfs://itcast0106:9000/bbb"));
    }
复制代码

HDFS的FileSystem遍历目录

复制代码
/**
     * 遍历目录,使用FileSystem的listStatus(path)
     * 如果要查看file状态,使用FileStatus对象
     * @throws Exception
     */
    private static void list() throws Exception{
        FileSystem fileSystem = getFileSystem();
        FileStatus[] listStatus = fileSystem.listStatus(new Path("hdfs://itcast0106:9000/"));
        for (FileStatus fileStatus : listStatus) {
            String isDir = fileStatus.isDir()?"目录":"文件";
            String name = fileStatus.getPath().toString();
            System.out.println(isDir+"  "+name);
        }
    }
复制代码

FileSystem

用户代码操作HDFS时,是直接调用FileSystem的子类完成的。

Remote Procedure Call

1.RPC——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。
2.RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息的到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。
3.hadoop的整个体系结构就是构建在RPC之上的(见org.apache.hadoop.ipc)。
RPC示例
复制代码
public interface Bizable extends  VersionedProtocol{
    public abstract String hello(String name);
}

class Biz implements Bizable{
    @Override
    public String hello(String name){
        System.out.println("被调用了");
        return "hello "+name;
    }

    @Override
    public long getProtocolVersion(String protocol, long clientVersion)
            throws IOException {
        System.out.println("Biz.getProtocalVersion()="+MyServer.VERSION);
        return MyServer.VERSION;
    }
}

public class MyServer {
    public static int PORT = 3242;
    public static long VERSION = 23234l;
    
    public static void main(String[] args) throws IOException {
        final Server server = RPC.getServer(new Biz(), "127.0.0.1", PORT, new Configuration());
        server.start();
    }
}

public class MyClient {
    public static void main(String[] args) throws IOException {
        final InetSocketAddress inetSocketAddress = new InetSocketAddress("127.0.0.1", MyServer.PORT);
        final Bizable proxy = (Bizable) RPC.getProxy(Bizable.class, MyServer.VERSION, inetSocketAddress, new Configuration());
        final String ret = proxy.hello("吴超");
        System.out.println(ret);
        
        RPC.stopProxy(proxy);
    }
}
复制代码

 

RPC调用流程
ClientProtocol
l是客户端(FileSystem)与NameNode通信的接口。
DatanodeProtocol 
l是DataNode与NameNode通信的接口
NamenodeProtocol 
l是SecondaryNameNode与NameNode通信的接口。
 
HDFS读过程
1.初始化FileSystem,然后客户端(client)用FileSystem的open()函数打开文件
2.FileSystem用RPC调用元数据节点,得到文件的数据块信息,对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。
3.FileSystem返回FSDataInputStream给客户端,用来读取数据,客户端调用stream的read()函数开始读取数据。
4.DFSInputStream连接保存此文件第一个数据块的最近的数据节点,data从数据节点读到客户端(client)
5.当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。
6.当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。
7.在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。
8.失败的数据节点将被记录,以后不再连接。
HDFS写过程 
1.初始化FileSystem,客户端调用create()来创建文件
2.FileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件,元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
3.FileSystem返回DFSOutputStream,客户端用于写数据,客户端开始写入数据。
4.DFSOutputStream将数据分成块,写入data queue。data queue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
5.DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
6.当客户端结束写入数据,则调用stream的close函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。
7.如果数据节点在写入的过程中失败,关闭pipeline,将ack queue中的数据块放入data queue的开始,当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。
 
练习题
1.练习shell命令
2.在HDFS创建一个文本文件hadoop.test。内容自定;然后,用Java程序在本地终端打印hadoop.test文件内容
3.用Java程序实现copyFromLocal
 
思考题
1.hdfs的组成部分有哪些,分别解释一下
2.hdfs的高可靠如何实现
3.hdfs的常用shell命令有哪些
4.hdfs的常用java api有哪些
5.请用shell命令实现目录、文件的增删改查
6.请用java api实现目录、文件的增删改查
 
 

本文转自SummerChill博客园博客,原文链接:http://www.cnblogs.com/DreamDrive/p/4566838.html,如需转载请自行联系原作者

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
HADOOP学习笔记之HDFS
Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统;
17 0
SpringBoot框架学习笔记—动力节点王鹤
最近跟着动力节点王鹤老师的视频学到了springboot,看过最细的springboot讲解,初学入门最佳,自己做了笔记分享给大家 视频资源: https://www.bilibili.com/video/BV1XQ4y1m7ex 1. 外部资源properties的几种导入方式 1.1 使用注解直接在实体类上赋值
88 0
SpringBoot学习笔记-3:第三章 Spring Boot 日志
SpringBoot学习笔记-3:第三章 Spring Boot 日志
47 0
SpringBoot学习笔记-8:第八章 Spring Boot 自定义 starters
SpringBoot学习笔记-8:第八章 Spring Boot 自定义 starters
46 0
Hadoop学习笔记(一)从官网下载安装包
Hadoop是一个分布式系统基础架构,由Apache基金会所开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。要学习Hadoop从下载安装包开始 打开Hadoop的官方网站,点击Download Hadoop 或点击“Getting Started”节中的 Download Hadoop from the release page.
798 0
Hadoop学习笔记一:单节点安装
通过本节的学习,可以掌握如何在单节点上使用Hadoop进行Map/Reduce以及HDFS存储的实现。 环境要求: 支持的平台:      支持GNU/Linux平台,可以作为测试和生产环境使用。
868 0
2010
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载