算法和数据结构~各位排序算法的介绍与实现(C#)

简介:

上一讲大概介绍了一个排序算法的概念与内存结构图,主要选自《算法精解》,各人认为,这本书写的还是不错的,大家可以直接下载epub版,然后在面度阅读APP上看,挺方便的!其实,学习,很简单!

      排序是指将元素集合按照规定的顺序排列。通常有两种排序方法,升序排列和降序排列。例如,对整数集{5,2,7,1}进行升序排列,结果为{1,2,5,7},对其进行降序排列结果为{7,5,2,1}。总的来说,排序的目的是使数据能够以更有意义的形式表现出来。虽然排序最显著的应用是排列数据以显示它,但它往往可以用来解决其他的问题,特别是作为某些已成型算法的一部分。
      总的来说,排序算法分为两大类:比较排序和线性时间排序。比较排序依赖于比较和交换来将元素移动到正确的位置上。令人惊讶的是,并不是所有的排序算法都依赖于比较。对于那些确实依赖于比较来进行排序的算法来说,它们的运行时间往往不可能小于O(nlg n)。对于线性时间排序,从它的名字就可以看出,它的运行时间往往与它处理的数据元素个数成正比,即为O(n)。遗憾的是,线性时间排序依赖于数据集合中的某些特征,所以我们并不是在所有的场合都能够使用它。某些排序算法只使用数据本身的存储空间来处理和输出数据(这些称为就地排序),而有一些则需要额外的空间来处理和输出数据(虽然可能最终结果还是会拷贝到原始的内存空间中)。

    /// <summary>
    /// 排序算法
    /// 作者:仓储大叔
    /// 代码来源:部分自写,部分网上摘录,都经过测试可以放心使用
    /// </summary>
    public class SortHelper
    {
        #region Public Methods
        /// <summary>
        /// 插入排序
        /// </summary>
        public static void InsertSort(List<int> list)
        {

            /*
             * 复杂度 O(n^2)
             * 插入排序从根本上来说,就是每次从未排序的数据集中取出一个元素,插入已排好序的数据集中。在以下所展示的实现中,两个数据集都存放在data中,data是一块连接的存储区域。最初,data包含size个无序元素。随着issort的运行,data逐渐被有序数据集所取代,直到issort返回(此时,data已经是一个有序数据集)。虽然实现插入排序用到连续的存储空间,但它也能用链表来实现(并不是所有的排序都可以使用链表来实现),并且效率不差。
             */
            for (int j = 1; j < list.Count; j++)
            {
                int i = j - 1;
                int currnet = list[j];
                while (i >= 0 && currnet > list[i])
                {
                    list[i + 1] = list[i];
                    i--;
                }
                list[i + 1] = currnet;
            }
        }
        /// <summary>
        /// 快速排序
        /// </summary>
        /// <param name="list">目标数组</param>
        /// <param name="left">子表的起始位置</param>
        /// <param name="right">子表的终止位置</param>
        public static void QuickSort(List<int> list, int left, int right)
        {
            /*
           * 复杂度 O(nlg^n)
           * 描述 利用快速排序将数组data中的元素进行排序。数组中的元素个数由size决定。而每个元素的大小由esize决定。参数i和k定义当前进行排序的两个部分,其值分别初始化为0和size-1。函数指针compare会指向一个用户定义的函数来比较元素大小。其函数功能与issort中描述的一样。当qksort返回时,data包含已排序的元素
           */
            if (left < right)
            {
                int i = Division(list, left, right);
                //对枢轴的左边部分进行排序
                QuickSort(list, i + 1, right);
                //对枢轴的右边部分进行排序
                QuickSort(list, left, i - 1);
            }
        }
        /// <summary>
        /// 归并排序
        /// </summary>
        /// <param name="array">目标数组</param>
        /// <param name="first">子表的起始位置</param>
        /// <param name="last">子表的终止位置</param>
        public static void MergeSortFunction(List<int> array, int first, int last)
        {
            /*
             * 复杂度 O(nlg^n)
             * 描述 利用归并排序将数组data中的元素进行排序。数组中的元素个数由size决定。而每个元素的大小由esize决定。参数i和k定义当前进行排序的两个部分,其值分别初始化为0和size-1。函数指针compare会指向一个用户定义的函数来比较元素大小。其函数功能与issort中描述的一样。当mgsort返回时,data中包含已排序的元素。
             */
            if (first < last)   //子表的长度大于1,则进入下面的递归处理
            {
                int mid = (first + last) / 2;   //子表划分的位置
                MergeSortFunction(array, first, mid);   //对划分出来的左侧子表进行递归划分
                MergeSortFunction(array, mid + 1, last);    //对划分出来的右侧子表进行递归划分
                MergeSortCore(array, first, mid, last); //对左右子表进行有序的整合(归并排序的核心部分)
            }

        }
        /// <summary>  
        /// 计数排序  
        /// </summary>  
        /// <param name="arrayToSort">要排序的数组</param>  
        /// <param name="maxValue">数组的最大值加一</param>  
        /// <returns>计数排序后的结果</returns>  
        public static List<int> CountingSort(List<int> arrayA, int arrange)
        {
            /* 复杂度 O(n+k),n为要排序的元素的个数,k为data中最大的整数加1。
             * 计数排序是一种高效的线性排序,它通过计算一个集合中元素出现的次数来确定集合如何排列。不同于之前介绍的一些算法是基于比较的,计数排序不需要进行元素比较,而且它的运行效率要比效率为O(nlg n)比较排序高。 
             */

            int[] arrayResult = new int[arrayA.Count];
            int[] arrayTemp = new int[arrange + 1];
            for (int i = 0; i <= arrange; i++)
            {
                arrayTemp[i] = 0;
            }
            for (int j = 0; j < arrayA.Count; j++)
            {
                arrayTemp[arrayA[j]] += 1;
            }
            for (int k = 1; k <= arrange; k++)
            {
                arrayTemp[k] += arrayTemp[k - 1];
            }
            for (int m = arrayA.Count - 1; m >= 0; m--)
            {
                arrayResult[arrayTemp[arrayA[m]] - 1] = arrayA[m];
                arrayTemp[arrayA[m]] -= 1;
            }
            return arrayResult.ToList();
        }
        /// <summary>
        /// 冒泡排序
        /// </summary>
        /// <param name="arr"></param>
        public void EbullitionSort(List<int> arr)
        {
            /*
             * 复杂度O(n^2) 
             * 对1至n个记录,在第i趟排序中设置标志flag:=true,未排序的标志。从下往上扫描,以j作为内层循环变量,共做n-i次比较。在第j趟比较中,若r[j+1]<r[j]则交换,并至flag为false。在一趟排序结束后,若flag为true,则终止排序。
             */
            int i, j, temp;
            bool done = false;
            j = 1;
            while ((j < arr.Count) && (!done))//判断长度    
            {
                done = true;
                for (i = 0; i < arr.Count - j; i++)
                {
                    if (arr[i] > arr[i + 1])
                    {
                        done = false;
                        temp = arr[i];
                        arr[i] = arr[i + 1];//交换数据    
                        arr[i + 1] = temp;
                    }
                }
                j++;
            }
        }

        #endregion

        #region Private Methods
        /// <summary>
        /// 归并排序的核心部分:将两个有序的左右子表(以mid区分),合并成一个有序的表
        /// </summary>
        /// <param name="array"></param>
        /// <param name="first"></param>
        /// <param name="mid"></param>
        /// <param name="last"></param>
        private static void MergeSortCore(List<int> array, int first, int mid, int last)
        {

            int indexA = first; //左侧子表的起始位置
            int indexB = mid + 1;   //右侧子表的起始位置
            int[] temp = new int[last + 1]; //声明数组(暂存左右子表的所有有序数列):长度等于左右子表的长度之和。
            int tempIndex = 0;
            while (indexA <= mid && indexB <= last) //进行左右子表的遍历,如果其中有一个子表遍历完,则跳出循环
            {
                if (array[indexA] <= array[indexB]) //此时左子表的数 <= 右子表的数
                {
                    temp[tempIndex++] = array[indexA++];    //将左子表的数放入暂存数组中,遍历左子表下标++
                }
                else//此时左子表的数 > 右子表的数
                {
                    temp[tempIndex++] = array[indexB++];    //将右子表的数放入暂存数组中,遍历右子表下标++
                }
            }
            //有一侧子表遍历完后,跳出循环,将另外一侧子表剩下的数一次放入暂存数组中(有序)
            while (indexA <= mid)
            {
                temp[tempIndex++] = array[indexA++];
            }
            while (indexB <= last)
            {
                temp[tempIndex++] = array[indexB++];
            }

            //将暂存数组中有序的数列写入目标数组的制定位置,使进行归并的数组段有序
            tempIndex = 0;
            for (int i = first; i <= last; i++)
            {
                array[i] = temp[tempIndex++];
            }

        }

        /// <summary>
        /// 获取按枢轴值左右分流后枢轴的位置
        /// </summary>
        /// <param name="list"></param>
        /// <param name="left"></param>
        /// <param name="right"></param>
        /// <returns></returns>
        private static int Division(List<int> list, int left, int right)
        {
            while (left < right)
            {
                int num = list[left]; //将首元素作为枢轴
                if (num > list[left + 1])
                {
                    list[left] = list[left + 1];
                    list[left + 1] = num;
                    left++;
                }
                else
                {
                    int temp = list[right];
                    list[right] = list[left + 1];
                    list[left + 1] = temp;
                    right--;
                }
            }
            return left; //指向的此时枢轴的位置
        }
        #endregion

    }

对于算法与数据结构,我们还会继续,有理论,有实现,希望它可以不那么枯燥!

感谢咱们的阅读!

 本文转自博客园张占岭(仓储大叔)的博客,原文链接:算法和数据结构~各位排序算法的介绍与实现(C#),如需转载请自行联系原博主。

目录
相关文章
|
27天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
41 1
|
1月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
99 4
|
4天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
44 20
|
28天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
28天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
103 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
60 20
|
27天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
61 1
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
53 0
|
1月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
43 0