1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 #include<iomanip> 5 using namespace std; 6 double h=0.1;//步差 7 double xi[11]={0}; 8 double ol_yi[11]={1}; 9 double gol_yi[11]={1}; 10 double rk_yi[11]={1}; 11 double real_yi[11]={1}; 12 double f(double x,double y){ 13 return 2*x/(3*y*y); 14 }//f(x,y) 15 void OLFunction(){ 16 for(int i=0;i<10;i++){ 17 ol_yi[i+1]=ol_yi[i]+h*f(xi[i],ol_yi[i]); 18 } 19 }//欧拉方法 20 void GOLFunction(){ 21 for(int i=0;i<10;i++){ 22 gol_yi[i+1]=gol_yi[i]+ 23 h*( 24 f(xi[i],gol_yi[i]) 25 +f(xi[i+1],gol_yi[i]+h*f(xi[i],gol_yi[i])) 26 )/2; 27 } 28 }//改进欧拉方法 29 void RKFunction(){ 30 double K1,K2,K3,K4; 31 for(int i=0;i<10;i++){ 32 K1=f(xi[i],rk_yi[i]); 33 K2=f(xi[i]+h/2,rk_yi[i]+h*K1/2); 34 K3=f(xi[i]+h/2,rk_yi[i]+h*K2/2); 35 K4=f(xi[i]+h,rk_yi[i]+h*K3); 36 rk_yi[i+1]=rk_yi[i]+h*(K1+2*K2+2*K3+K4)/6; 37 } 38 }//经典龙格贝法 39 void RFunction(){ 40 for(int i=1;i<11;i++){ 41 real_yi[i]=pow(1.0+xi[i]*xi[i],1/3.0); 42 } 43 }//真实解 44 int main(){ 45 int i; 46 for(i=1;i<11;i++){ 47 xi[i]=xi[i-1]+h; 48 }//求xi[] 49 50 OLFunction();//四种计算方法 51 GOLFunction(); 52 RKFunction(); 53 RFunction(); 54 55 printf("-------------------------------------------------\n"); 56 printf("xi | 欧拉 | 改进欧拉 | 经典R-K | 准确解 \n"); 57 printf("-------------------------------------------------\n"); 58 for(i=0;i<11;i++){ 59 printf("%.1lf | %.6lf | %.6lf | %.6lf | %.8lf\n", 60 xi[i],ol_yi[i],gol_yi[i],rk_yi[i],real_yi[i]); 61 } 62 getchar(); 63 return 0; 64 }