Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and set
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
这道题让我们实现一个LRU缓存器,LRU是Least Recently Used的简写,就是最近最少使用的意思。那么这个缓存器主要有两个成员函数,get和set,其中get函数是通过输入key来获得value,如果成功获得后,这对(key, value)升至缓存器中最常用的位置(顶部),如果key不存在,则返回-1。而set函数是插入一对新的(key, value),如果原缓存器中有该key,则需要先删除掉原有的,将新的插入到缓存器的顶部。如果不存在,则直接插入到顶部。若加入新的值后缓存器超过了容量,则需要删掉一个最不常用的值,也就是底部的值。具体实现时我们需要三个私有变量,cap, l和m,其中cap是缓存器的容量大小,l是保存缓存器内容的列表,m是哈希表,保存关键值key和缓存器各项的迭代器之间映射,方便我们以O(1)的时间内找到目标项。
然后我们再来看get和set如何实现,get相对简单些,我们在m中查找给定的key,如果存在则将此项移到顶部,并返回value,若不存在返回-1。对于set,我们也是现在m中查找给定的key,如果存在就删掉原有项,并在顶部插入新来项,然后判断是否溢出,若溢出则删掉底部项(最不常用项)。代码如下:
class LRUCache{ public: LRUCache(int capacity) { cap = capacity; } int get(int key) { auto it = m.find(key); if (it == m.end()) return -1; l.splice(l.begin(), l, it->second); return it->second->second; } void set(int key, int value) { auto it = m.find(key); if (it != m.end()) l.erase(it->second); l.push_front(make_pair(key, value)); m[key] = l.begin(); if (m.size() > cap) { int k = l.rbegin()->first; l.pop_back(); m.erase(k); } } private: int cap; list<pair<int, int> > l; unordered_map<int, list<pair<int, int> >::iterator> m; };
本文转自博客园Grandyang的博客,原文链接:最近最少使用页面置换缓存器[LeetCode] LRU Cache ,如需转载请自行联系原博主。