[LeetCode] LRU Cache 最近最少使用页面置换缓存器

简介:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

这道题让我们实现一个LRU缓存器,LRU是Least Recently Used的简写,就是最近最少使用的意思。那么这个缓存器主要有两个成员函数,get和set,其中get函数是通过输入key来获得value,如果成功获得后,这对(key, value)升至缓存器中最常用的位置(顶部),如果key不存在,则返回-1。而set函数是插入一对新的(key, value),如果原缓存器中有该key,则需要先删除掉原有的,将新的插入到缓存器的顶部。如果不存在,则直接插入到顶部。若加入新的值后缓存器超过了容量,则需要删掉一个最不常用的值,也就是底部的值。具体实现时我们需要三个私有变量,cap, l和m,其中cap是缓存器的容量大小,l是保存缓存器内容的列表,m是哈希表,保存关键值key和缓存器各项的迭代器之间映射,方便我们以O(1)的时间内找到目标项。

然后我们再来看get和set如何实现,get相对简单些,我们在m中查找给定的key,如果存在则将此项移到顶部,并返回value,若不存在返回-1。对于set,我们也是现在m中查找给定的key,如果存在就删掉原有项,并在顶部插入新来项,然后判断是否溢出,若溢出则删掉底部项(最不常用项)。代码如下:

class LRUCache{
public:
    LRUCache(int capacity) {
        cap = capacity;
    }
    
    int get(int key) {
        auto it = m.find(key);
        if (it == m.end()) return -1;
        l.splice(l.begin(), l, it->second);
        return it->second->second;
    }
    
    void set(int key, int value) {
        auto it = m.find(key);
        if (it != m.end()) l.erase(it->second);
        l.push_front(make_pair(key, value));
        m[key] = l.begin();
        if (m.size() > cap) {
            int k = l.rbegin()->first;
            l.pop_back();
            m.erase(k);
        }
    }
    
private:
    int cap;
    list<pair<int, int> > l;
    unordered_map<int, list<pair<int, int> >::iterator> m;
};

本文转自博客园Grandyang的博客,原文链接:最近最少使用页面置换缓存器[LeetCode] LRU Cache ,如需转载请自行联系原博主。

相关文章
|
3月前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
75 3
|
5月前
|
存储 缓存 NoSQL
【Azure Redis 缓存】关于Azure Cache for Redis 服务在传输和存储键值对(Key/Value)的加密问题
【Azure Redis 缓存】关于Azure Cache for Redis 服务在传输和存储键值对(Key/Value)的加密问题
|
5月前
|
缓存 弹性计算 NoSQL
【Azure Redis 缓存 Azure Cache For Redis】Redis连接池
【Azure Redis 缓存 Azure Cache For Redis】Redis连接池
|
3月前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
88 2
|
5月前
|
缓存 NoSQL Java
【Azure Redis 缓存 Azure Cache For Redis】Redis出现 java.net.SocketTimeoutException: Read timed out 异常
【Azure Redis 缓存 Azure Cache For Redis】Redis出现 java.net.SocketTimeoutException: Read timed out 异常
|
5月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
246 1
|
5月前
|
存储 缓存 NoSQL
【Azure Redis 缓存 Azure Cache For Redis】如何设置让Azure Redis中的RDB文件暂留更久(如7天)
【Azure Redis 缓存 Azure Cache For Redis】如何设置让Azure Redis中的RDB文件暂留更久(如7天)
|
5月前
|
缓存 NoSQL Redis
【Azure Redis 缓存】Azure Cache for Redis 服务的导出RDB文件无法在自建的Redis服务中导入
【Azure Redis 缓存】Azure Cache for Redis 服务的导出RDB文件无法在自建的Redis服务中导入
|
5月前
|
缓存 开发框架 NoSQL
【Azure Redis 缓存】VM 里的 Redis 能直接迁移到 Azure Cache for Redis ? 需要改动代码吗?
【Azure Redis 缓存】VM 里的 Redis 能直接迁移到 Azure Cache for Redis ? 需要改动代码吗?
|
5月前
|
缓存 NoSQL Unix
【Azure Redis 缓存】Azure Cache for Redis 中如何快速查看慢指令情况(Slowlogs)
【Azure Redis 缓存】Azure Cache for Redis 中如何快速查看慢指令情况(Slowlogs)