Max Points on a Line

简介:

Max Points on a Line

  Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

  • 题目大意:给定n个二维平面上的点,求出这n个点当中最多有多少个点在同一直线上。
  • 解题思路:每次取定一个点p1,然后求出p1与其他的n-1个点的斜率,并统计斜率相同的数目,取最大值即可。
  • 具体实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <iostream>
#include <map>
#include <climits>
 
using  namespace  std;
 
struct  Point {
       int  x;
       int  y;
       Point() : x(0), y(0) {}
       Point( int  a,  int  b) : x(a), y(b) {}
};
 
class  Solution {
public :
     int  maxPoints(vector<Point> &points) {
         int  maxNum =0;
         int  size = points.size();
         int  i,j;
         if (size <=2)    //如果点的个数小于3个,则最大数目为点的个数
             return  size;
         for (i=0;i<size;i++)
         {
             int  cnt =0;
             map< double , int > mp;
             for (j=0;j<size;j++)
             {
                 if (i==j)
                     continue ;
                 if (points[i].x == points[j].x && points[i].y == points[j].y)
                 {
                     cnt++;
                     continue ;
                 }  
                 //注意当直线与y轴平行的情况
                 double  slope = points[i].x == points[j].x ? INT_MAX : ( double )(points[j].y - points[i].y)/(points[j].x - points[i].x); 
                 mp[slope]++; 
             }
             
             if (mp.size()==0)    //防止mp为空时,下面的for循环不执行
                 mp[INT_MIN] =0;
             map< double , int >::iterator it = mp.begin();
             for (;it!=mp.end();it++)
             {
                 if (it->second+ cnt > maxNum)
                     maxNum = it->second +cnt;
             }
         }
         return  maxNum+1;
     }
};
 
 
int  main( int  argc,  char  *argv[])
{
     vector<Point> points;
     Point point[3];
     int  i=0;
     for (i=0;i<3;i++)
     {
         point[i].x = 1;
         point[i].y= 1;
         points.push_back(point[i]);
     }
     Solution solution;
     cout<<solution.maxPoints(points);
     return  0;
}

  这里要注意3个地方:

  1)如果点的个数小于3个,则最大数目为点的个数;

  2)考虑重复点的情况,重复点是无法计算斜率的;

  3)考虑直线与y轴平行时,斜率为无穷大的情况。


本文转载自海 子博客园博客,原文链接:http://www.cnblogs.com/dolphin0520/p/3737561.html如需转载自行联系原作者


相关文章
|
8月前
【Simulink】报错:Size mismatch (size [2 x 1] ~= size [1 x 1]). The size to the left is the size of the l
【Simulink】报错:Size mismatch (size [2 x 1] ~= size [1 x 1]). The size to the left is the size of the l
LeetCode 149. Max Points on a Line
给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上。
109 0
LeetCode 149. Max Points on a Line
成功解决ValueError: min_samples_split must be an integer greater than 1 or a float in (0.0, 1.0]; got th
成功解决ValueError: min_samples_split must be an integer greater than 1 or a float in (0.0, 1.0]; got th
成功解决IndexError: index 14 is out of bounds for axis 1 with size 14
成功解决IndexError: index 14 is out of bounds for axis 1 with size 14