数据库与数据仓库的区别(转载)

简介: 数据库:传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

数据库:传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。

数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

我尝试着再补充些具体的事例来说明,这样更可以帮助大家更好理解一些。举个最常见的例子,拿电商行业来说好了。基本每家电商公司都会经历,从只需要业务数据库到要数据仓库的阶段。

电商早期启动非常容易,入行门槛低。找个外包团队,做了一个可以下单的网页前端 + 几台服务器 + 一个MySQL,就能开门迎客了。这好比手工作坊时期。

第二阶段,流量来了,客户和订单都多起来了,普通查询已经有压力了,这个时候就需要升级架构变成多台服务器和多个业务数据库(量大+分库分表),这个阶段的业务数字和指标还可以勉强从业务数据库里查询。初步进入工业化。

第三个阶段,一般需要 3-5 年左右的时间,随着业务指数级的增长,数据量的会陡增,公司角色也开始多了起来,开始有了 CEO、CMO、CIO,大家需要面临的问题越来越复杂,越来越深入。高管们关心的问题,从最初非常粗放的:“昨天的收入是多少”、“上个月的 PV、UV 是多少”,逐渐演化到非常精细化和具体的用户的集群分析,特定用户在某种使用场景中,例如“20~30岁女性用户在过去五年的第一季度化妆品类商品的购买行为与公司进行的促销活动方案之间的关系”。这类非常具体,且能够对公司决策起到关键性作用的问题,基本很难从业务数据库从调取出来。原因在于:业务数据库中的数据结构是为了完成交易而设计的,不是为了而查询和分析的便利设计的。业务数据库大多是读写优化的,即又要读(查看商品信息),也要写(产生订单,完成支付)。因此对于大量数据的读(查询指标,一般是复杂的只读类型查询)是支持不足的。

然而怎么解决这个问题,此时我们就需要建立一个数据仓库了,公司也算开始进入信息化阶段了。数据仓库的作用在于:数据结构为了分析和查询的便利;只读优化的数据库,即不需要它写入速度多么快,只要做大量数据的复杂查询的速度足够快就行了。那么在这里前一种业务数据库(读写都优化)的是业务性数据库,后一种是分析性数据库,即数据仓库。

最后总结一下:数据库 比较流行的有:MySQL, Oracle, SqlServer等数据仓库 比较流行的有:AWS Redshift, Greenplum, Hive等这样把数据从业务性的数据库中提取、加工、导入分析性的数据库就是传统的 ETL 工作。现在也有一些新的方法,这展开说又是另一件事情了,有机会再详细说说。

作者:陈诚
链接:https://www.zhihu.com/question/20623931/answer/139842331
来源:知乎

最后补充一下ETL:ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

目录
相关文章
|
1月前
|
存储 SQL 运维
速看!数据库与数据仓库的本质区别是什么?
本文深入解析了“数据库”与“数据仓库”的核心区别,涵盖设计目的、数据结构、使用场景、性能优化和数据更新五个维度。数据库主要用于支持实时业务操作,强调事务处理效率;数据仓库则面向企业分析决策,注重海量数据的整合与查询性能。二者在企业中各司其职,缺一不可。
|
14天前
|
存储 机器学习/深度学习 数据采集
一文讲透数据仓库、数据湖、数据海的区别
企业常因数据架构不清导致报表延迟、数据矛盾、利用困难。核心解法是构建数据仓库(高效分析)、数据湖(灵活存储原始数据)和数据海(全局集成)。三者各有适用场景,需根据业务需求选择,常共存互补,助力数据驱动决策。
一文讲透数据仓库、数据湖、数据海的区别
|
2月前
|
存储 数据管理 数据库
数据字典是什么?和数据库、数据仓库有什么关系?
在数据处理中,你是否常困惑于字段含义、指标计算或数据来源?数据字典正是解答这些问题的关键工具,它清晰定义数据的名称、类型、来源、计算方式等,服务于开发者、分析师和数据管理者。本文详解数据字典的定义、组成及其与数据库、数据仓库的关系,助你夯实数据基础。
数据字典是什么?和数据库、数据仓库有什么关系?
|
2月前
|
存储 传感器 数据管理
数据仓库、数据集市、数据湖、数据海,到底有啥区别?
本文深入解析了“数据仓库、数据集市、数据湖、数据海”的核心区别与应用场景,帮助企业理解不同数据平台的设计理念与适用范围。从支持决策分析的数据仓库,到面向业务部门的数据集市,再到存储多样化数据的数据湖,以及实现跨组织协作的数据海,四者构成企业数据能力由浅入深的发展路径。文章结合实际业务场景,提供选型建议,助力企业在不同发展阶段合理构建数据体系,挖掘数据价值。
数据仓库、数据集市、数据湖、数据海,到底有啥区别?
|
3月前
|
存储 BI API
一文读懂数据中台和数据仓库的区别
本文深入解析了“数据中台”与“数据仓库”的区别,从定义、功能、架构设计、数据处理、应用场景等多个维度进行对比,帮助企业更清晰地理解二者的核心差异与适用场景。数据仓库重在存储与分析历史数据,服务于高层决策;数据中台则强调数据的实时处理与服务化输出,直接赋能一线业务。文章还结合企业规模、业务需求与技术能力,给出了选型建议,助力企业在数字化转型中做出更科学的选择。
|
3月前
|
存储 数据采集 NoSQL
什么是数据仓库?数据库与数据仓库有什么关系?
数据仓库与数据库有何区别?数据仓库主要用于存储历史数据,支持企业分析决策;而数据库则负责管理实时业务数据,保障日常运作。两者在数据来源、处理方式、存储结构等方面差异显著,但又相辅相成,共同助力企业高效管理数据、提升运营与决策能力。
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
7月前
|
SQL NoSQL Oracle
关系型与非关系型数据库的区别
关系型数据库是依据关系模型来创建的数据库,所谓关系模型就是“一对一”、“一对多”、“对多对”等。常见的关系型数据库有Oracle、MySQL、SQL Server等。非关系型数据库主要基于“非关系型模型”,其中非关系型模型有:列模型、键值对模型、文档类模型。比如redis属于键值对模型。 MongoDB属于文档模型 关系型数据库的优点: ● 易于维护:都是使用表结构,格式一致。 ● 使用方便:SQL语言通用,可用于复杂查询。 ● 复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询。 关系型数据库的缺点: ● 读写性能比较差,尤其是海量数据的高效率读写。 ● 固定的表结构,灵活
|
7月前
|
SQL 存储 关系型数据库
在PG数据库中,not in 和except的区别
在PG数据库中,not in 和except的区别
|
11月前
|
SQL 安全 网络安全
Web应用防火墙(WAF)与数据库应用防火墙有什么区别?
Web应用防火墙(WAF)专注于Web应用系统和网站的应用层防护,可有效应对OWASP Top 10等常见攻击,防止SQL注入、CC攻击等。而数据库应用防火墙则位于应用服务器与数据库之间,提供数据库访问控制、攻击阻断、虚拟补丁等高级防护功能,直接保护数据库免受攻击。两者分别针对Web层和数据库层提供不同的安全保护。
200 4