开发者社区> 墨持alvin> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

数据库与数据仓库的区别(转载)

简介: 数据库:传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。 数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
+关注继续查看

数据库:传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。

数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

我尝试着再补充些具体的事例来说明,这样更可以帮助大家更好理解一些。举个最常见的例子,拿电商行业来说好了。基本每家电商公司都会经历,从只需要业务数据库到要数据仓库的阶段。

电商早期启动非常容易,入行门槛低。找个外包团队,做了一个可以下单的网页前端 + 几台服务器 + 一个MySQL,就能开门迎客了。这好比手工作坊时期。

第二阶段,流量来了,客户和订单都多起来了,普通查询已经有压力了,这个时候就需要升级架构变成多台服务器和多个业务数据库(量大+分库分表),这个阶段的业务数字和指标还可以勉强从业务数据库里查询。初步进入工业化。

第三个阶段,一般需要 3-5 年左右的时间,随着业务指数级的增长,数据量的会陡增,公司角色也开始多了起来,开始有了 CEO、CMO、CIO,大家需要面临的问题越来越复杂,越来越深入。高管们关心的问题,从最初非常粗放的:“昨天的收入是多少”、“上个月的 PV、UV 是多少”,逐渐演化到非常精细化和具体的用户的集群分析,特定用户在某种使用场景中,例如“20~30岁女性用户在过去五年的第一季度化妆品类商品的购买行为与公司进行的促销活动方案之间的关系”。这类非常具体,且能够对公司决策起到关键性作用的问题,基本很难从业务数据库从调取出来。原因在于:业务数据库中的数据结构是为了完成交易而设计的,不是为了而查询和分析的便利设计的。业务数据库大多是读写优化的,即又要读(查看商品信息),也要写(产生订单,完成支付)。因此对于大量数据的读(查询指标,一般是复杂的只读类型查询)是支持不足的。

然而怎么解决这个问题,此时我们就需要建立一个数据仓库了,公司也算开始进入信息化阶段了。数据仓库的作用在于:数据结构为了分析和查询的便利;只读优化的数据库,即不需要它写入速度多么快,只要做大量数据的复杂查询的速度足够快就行了。那么在这里前一种业务数据库(读写都优化)的是业务性数据库,后一种是分析性数据库,即数据仓库。

最后总结一下:数据库 比较流行的有:MySQL, Oracle, SqlServer等数据仓库 比较流行的有:AWS Redshift, Greenplum, Hive等这样把数据从业务性的数据库中提取、加工、导入分析性的数据库就是传统的 ETL 工作。现在也有一些新的方法,这展开说又是另一件事情了,有机会再详细说说。

作者:陈诚
链接:https://www.zhihu.com/question/20623931/answer/139842331
来源:知乎

最后补充一下ETL:ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
地理数据与数据仓库
如果想要实现Google Earth,大概的流程是怎样的呢?
1760 0
34-博客网站数据库-博文信息数据操作(一)
34-博客网站数据库-博文信息数据操作(一)
11 0
数据仓库基础
数据仓库基础
114 0
数据仓库建模:定义事实表的粒度
数据仓库建模:定义事实表的粒度Posted on 2015-08-25 09:03 xuzhengzhu 阅读(28) 评论(0) 编辑 收藏 维度建模中一个非常重要的步骤是定义事实表的粒度。
1527 0
使用强类型数据集进行有效编码——转载
曾经有人告诉我优秀的开发人员的特点是希望能够有效地利用时间。开发人员不断追求更容易更快速的编码方式,以及减少错误数量的方法。使用 ADO.NET 中的强类型数据集对象可以帮助您做到这一点。 本月我将从正反两方面来讨论使用强类型数据集对象开发基于 Microsoft® .NET Framework 的应用程序。
1155 0
Hive必知必会(数据仓库)
Hive必知必会(数据仓库) 25
188 0
阿里数据仓库实践分享
数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
15081 0
大数据与海量数据的区别
       如果仅仅是海量的结构性数据,那么解决的办法就比较的单一,用户通过购买更多的存储设备,提高存储设备的效率等解决此类问题。然而,当人们发现数据库中的数据可以分为三种类型:结构性数据、非结构性数据以及半结构性数据等复杂情况时,问题似乎就没有那么简单了。
1799 0
+关注
墨持alvin
架构,数据库相关专家
80
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载