Java并发编程:线程间协作的两种方式:wait、notify、notifyAll和Condition

简介:

Java并发编程:线程间协作的两种方式:wait、notify、notifyAll和Condition

  在前面我们将了很多关于同步的问题,然而在现实中,需要线程之间的协作。比如说最经典的生产者-消费者模型:当队列满时,生产者需要等待队列有空间才能继续往里面放入商品,而在等待的期间内,生产者必须释放对临界资源(即队列)的占用权。因为生产者如果不释放对临界资源的占用权,那么消费者就无法消费队列中的商品,就不会让队列有空间,那么生产者就会一直无限等待下去。因此,一般情况下,当队列满时,会让生产者交出对临界资源的占用权,并进入挂起状态。然后等待消费者消费了商品,然后消费者通知生产者队列有空间了。同样地,当队列空时,消费者也必须等待,等待生产者通知它队列中有商品了。这种互相通信的过程就是线程间的协作。

  今天我们就来探讨一下Java中线程协作的最常见的两种方式:利用Object.wait()、Object.notify()和使用Condition

  以下是本文目录大纲:

  一.wait()、notify()和notifyAll()

  二.Condition

  三.生产者-消费者模型的实现

  若有不正之处请多多谅解,并欢迎批评指正。

  请尊重作者劳动成果,转载请标明原文链接:

  http://www.cnblogs.com/dolphin0520/p/3920385.html

 

一.wait()、notify()和notifyAll()

  wait()、notify()和notifyAll()是Object类中的方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
  * Wakes up a single thread that is waiting on this object's
  * monitor. If any threads are waiting on this object, one of them
  * is chosen to be awakened. The choice is arbitrary and occurs at
  * the discretion of the implementation. A thread waits on an object's
  * monitor by calling one of the wait methods
  */
public  final  native  void  notify();
 
/**
  * Wakes up all threads that are waiting on this object's monitor. A
  * thread waits on an object's monitor by calling one of the
  * wait methods.
  */
public  final  native  void  notifyAll();
 
/**
  * Causes the current thread to wait until either another thread invokes the
  * {@link java.lang.Object#notify()} method or the
  * {@link java.lang.Object#notifyAll()} method for this object, or a
  * specified amount of time has elapsed.
  * <p>
  * The current thread must own this object's monitor.
  */
public  final  native  void  wait( long  timeout)  throws  InterruptedException;

   从这三个方法的文字描述可以知道以下几点信息:

  1)wait()、notify()和notifyAll()方法是本地方法,并且为final方法,无法被重写。

  2)调用某个对象的wait()方法能让当前线程阻塞,并且当前线程必须拥有此对象的monitor(即锁)

  3)调用某个对象的notify()方法能够唤醒一个正在等待这个对象的monitor的线程,如果有多个线程都在等待这个对象的monitor,则只能唤醒其中一个线程;

  4)调用notifyAll()方法能够唤醒所有正在等待这个对象的monitor的线程;

  有朋友可能会有疑问:为何这三个不是Thread类声明中的方法,而是Object类中声明的方法(当然由于Thread类继承了Object类,所以Thread也可以调用者三个方法)?其实这个问题很简单,由于每个对象都拥有monitor(即锁),所以让当前线程等待某个对象的锁,当然应该通过这个对象来操作了。而不是用当前线程来操作,因为当前线程可能会等待多个线程的锁,如果通过线程来操作,就非常复杂了。

  上面已经提到,如果调用某个对象的wait()方法,当前线程必须拥有这个对象的monitor(即锁),因此调用wait()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。

  调用某个对象的wait()方法,相当于让当前线程交出此对象的monitor,然后进入等待状态,等待后续再次获得此对象的锁(Thread类中的sleep方法使当前线程暂停执行一段时间,从而让其他线程有机会继续执行,但它并不释放对象锁);

  notify()方法能够唤醒一个正在等待该对象的monitor的线程,当有多个线程都在等待该对象的monitor的话,则只能唤醒其中一个线程,具体唤醒哪个线程则不得而知。

  同样地,调用某个对象的notify()方法,当前线程也必须拥有这个对象的monitor,因此调用notify()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。

  nofityAll()方法能够唤醒所有正在等待该对象的monitor的线程,这一点与notify()方法是不同的。

  这里要注意一点:notify()和notifyAll()方法只是唤醒等待该对象的monitor的线程,并不决定哪个线程能够获取到monitor。

  举个简单的例子:假如有三个线程Thread1、Thread2和Thread3都在等待对象objectA的monitor,此时Thread4拥有对象objectA的monitor,当在Thread4中调用objectA.notify()方法之后,Thread1、Thread2和Thread3只有一个能被唤醒。注意,被唤醒不等于立刻就获取了objectA的monitor。假若在Thread4中调用objectA.notifyAll()方法,则Thread1、Thread2和Thread3三个线程都会被唤醒,至于哪个线程接下来能够获取到objectA的monitor就具体依赖于操作系统的调度了。

  上面尤其要注意一点,一个线程被唤醒不代表立即获取了对象的monitor,只有等调用完notify()或者notifyAll()并退出synchronized块,释放对象锁后,其余线程才可获得锁执行。

下面看一个例子就明白了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
public  class  Test {
     public  static  Object object =  new  Object();
     public  static  void  main(String[] args) {
         Thread1 thread1 =  new  Thread1();
         Thread2 thread2 =  new  Thread2();
         
         thread1.start();
         
         try  {
             Thread.sleep( 200 );
         catch  (InterruptedException e) {
             e.printStackTrace();
         }
         
         thread2.start();
     }
     
     static  class  Thread1  extends  Thread{
         @Override
         public  void  run() {
             synchronized  (object) {
                 try  {
                     object.wait();
                 catch  (InterruptedException e) {
                 }
                 System.out.println( "线程" +Thread.currentThread().getName()+ "获取到了锁" );
             }
         }
     }
     
     static  class  Thread2  extends  Thread{
         @Override
         public  void  run() {
             synchronized  (object) {
                 object.notify();
                 System.out.println( "线程" +Thread.currentThread().getName()+ "调用了object.notify()" );
             }
             System.out.println( "线程" +Thread.currentThread().getName()+ "释放了锁" );
         }
     }
}

   无论运行多少次,运行结果必定是:

  View Code

二.Condition

  Condition是在java 1.5中才出现的,它用来替代传统的Object的wait()、notify()实现线程间的协作,相比使用Object的wait()、notify(),使用Condition1的await()、signal()这种方式实现线程间协作更加安全和高效。因此通常来说比较推荐使用Condition,在阻塞队列那一篇博文中就讲述到了,阻塞队列实际上是使用了Condition来模拟线程间协作。

  • Condition是个接口,基本的方法就是await()和signal()方法;
  • Condition依赖于Lock接口,生成一个Condition的基本代码是lock.newCondition() 
  •  调用Condition的await()和signal()方法,都必须在lock保护之内,就是说必须在lock.lock()和lock.unlock之间才可以使用

  Conditon中的await()对应Object的wait();

  Condition中的signal()对应Object的notify();

  Condition中的signalAll()对应Object的notifyAll()。

三.生产者-消费者模型的实现

1.使用Object的wait()和notify()实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
public  class  Test {
     private  int  queueSize =  10 ;
     private  PriorityQueue<Integer> queue =  new  PriorityQueue<Integer>(queueSize);
      
     public  static  void  main(String[] args)  {
         Test test =  new  Test();
         Producer producer = test. new  Producer();
         Consumer consumer = test. new  Consumer();
          
         producer.start();
         consumer.start();
     }
      
     class  Consumer  extends  Thread{
          
         @Override
         public  void  run() {
             consume();
         }
          
         private  void  consume() {
             while ( true ){
                 synchronized  (queue) {
                     while (queue.size() ==  0 ){
                         try  {
                             System.out.println( "队列空,等待数据" );
                             queue.wait();
                         catch  (InterruptedException e) {
                             e.printStackTrace();
                             queue.notify();
                         }
                     }
                     queue.poll();           //每次移走队首元素
                     queue.notify();
                     System.out.println( "从队列取走一个元素,队列剩余" +queue.size()+ "个元素" );
                 }
             }
         }
     }
      
     class  Producer  extends  Thread{
          
         @Override
         public  void  run() {
             produce();
         }
          
         private  void  produce() {
             while ( true ){
                 synchronized  (queue) {
                     while (queue.size() == queueSize){
                         try  {
                             System.out.println( "队列满,等待有空余空间" );
                             queue.wait();
                         catch  (InterruptedException e) {
                             e.printStackTrace();
                             queue.notify();
                         }
                     }
                     queue.offer( 1 );         //每次插入一个元素
                     queue.notify();
                     System.out.println( "向队列取中插入一个元素,队列剩余空间:" +(queueSize-queue.size()));
                 }
             }
         }
     }
}

 2.使用Condition实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
public  class  Test {
     private  int  queueSize =  10 ;
     private  PriorityQueue<Integer> queue =  new  PriorityQueue<Integer>(queueSize);
     private  Lock lock =  new  ReentrantLock();
     private  Condition notFull = lock.newCondition();
     private  Condition notEmpty = lock.newCondition();
     
     public  static  void  main(String[] args)  {
         Test test =  new  Test();
         Producer producer = test. new  Producer();
         Consumer consumer = test. new  Consumer();
          
         producer.start();
         consumer.start();
     }
      
     class  Consumer  extends  Thread{
          
         @Override
         public  void  run() {
             consume();
         }
          
         private  void  consume() {
             while ( true ){
                 lock.lock();
                 try  {
                     while (queue.size() ==  0 ){
                         try  {
                             System.out.println( "队列空,等待数据" );
                             notEmpty.await();
                         catch  (InterruptedException e) {
                             e.printStackTrace();
                         }
                     }
                     queue.poll();                 //每次移走队首元素
                     notFull.signal();
                     System.out.println( "从队列取走一个元素,队列剩余" +queue.size()+ "个元素" );
                 finally {
                     lock.unlock();
                 }
             }
         }
     }
      
     class  Producer  extends  Thread{
          
         @Override
         public  void  run() {
             produce();
         }
          
         private  void  produce() {
             while ( true ){
                 lock.lock();
                 try  {
                     while (queue.size() == queueSize){
                         try  {
                             System.out.println( "队列满,等待有空余空间" );
                             notFull.await();
                         catch  (InterruptedException e) {
                             e.printStackTrace();
                         }
                     }
                     queue.offer( 1 );         //每次插入一个元素
                     notEmpty.signal();
                     System.out.println( "向队列取中插入一个元素,队列剩余空间:" +(queueSize-queue.size()));
                 finally {
                     lock.unlock();
                 }
             }
         }
     }
}

 

  参考资料:

  《Java编程思想》

  http://blog.csdn.net/ns_code/article/details/17225469

  http://blog.csdn.net/ghsau/article/details/7481142


l本文转载自海 子博客园博客,原文链接:http://www.cnblogs.com/dolphin0520/p/3920385.htm如需转载自行联系原作者

相关文章
|
3天前
|
存储 SQL 安全
Java 安全性编程:基本概念与实战指南
【4月更文挑战第27天】在当今的软件开发领域,安全性编程是一个至关重要的方面。Java,作为广泛使用的编程语言之一,提供了多种机制来保护应用免受常见的安全威胁。本博客将探讨 Java 安全性编程的基本概念,并通过实际示例来展示如何实现这些安全措施。
10 3
|
1天前
|
Java
Java中的条件语句结构在编程中的应用
Java中的条件语句结构在编程中的应用
4 0
|
1天前
|
安全 Java
Java修饰符在编程中的应用研究
Java修饰符在编程中的应用研究
6 0
|
1天前
|
消息中间件 监控 安全
【JAVAEE学习】探究Java中多线程的使用和重点及考点
【JAVAEE学习】探究Java中多线程的使用和重点及考点
|
1天前
|
安全 Java 开发者
构建高效微服务架构:后端开发的新范式Java中的多线程并发编程实践
【4月更文挑战第29天】在数字化转型的浪潮中,微服务架构已成为软件开发的一大趋势。它通过解耦复杂系统、提升可伸缩性和促进敏捷开发来满足现代企业不断变化的业务需求。本文将深入探讨微服务的核心概念、设计原则以及如何利用最新的后端技术栈构建和部署高效的微服务架构。我们将分析微服务带来的挑战,包括服务治理、数据一致性和网络延迟问题,并讨论相应的解决方案。通过实际案例分析和最佳实践的分享,旨在为后端开发者提供一套实施微服务的全面指导。 【4月更文挑战第29天】在现代软件开发中,多线程技术是提高程序性能和响应能力的重要手段。本文通过介绍Java语言的多线程机制,探讨了如何有效地实现线程同步和通信,以及如
|
1天前
|
Java 关系型数据库 MySQL
【JDBC编程】基于MySql的Java应用程序中访问数据库与交互数据的技术
【JDBC编程】基于MySql的Java应用程序中访问数据库与交互数据的技术
|
2天前
|
算法 安全 Java
Java并发编程基础总结
Java并发编程基础总结
4 0
|
3天前
|
Java 开发者 UED
Java 异步和事件驱动编程:探索响应式模式
【4月更文挑战第27天】在现代软件开发中,异步和事件驱动编程是提高应用性能和响应性的关键策略。Java 提供了多种机制来支持这些编程模式,使开发者能够构建高效、可扩展的应用程序。
14 4
|
1天前
|
监控 安全 Java
【多线程学习】深入探究阻塞队列与生产者消费者模型和线程池常见面试题
【多线程学习】深入探究阻塞队列与生产者消费者模型和线程池常见面试题
|
1天前
|
缓存 安全 Java
多线程--深入探究多线程的重点,难点以及常考点线程安全问题
多线程--深入探究多线程的重点,难点以及常考点线程安全问题