上一篇里的LAME项目已经展示了python如何与C语言交互,但程序仍不够理想,在python这一端仅仅是传递源文件和目标文件的路径,再调用C模块的encode方法来进行编码,但问题在于你无法控制encode函数,比如你想编码的源文件如果不是原始数据,而是wav文件或者其他格式呢?对于这个问题,有两种方法可以选择,一种模仿前面的C模块,在你的Python代码中读取数据,并将数据块逐个传递给encode函数,另一种方法是你传进去一个对象,这个对象带有一个read方法,这样你就可以在C模块里直接调用它的read方法来读取其数据。
听起来好像第二种更加面向对象,但实际上第一种方法反而是更为合适的选择,因为它更为灵活,下面我们就在上一篇的基础上,利用第一种思路对其进行改造。在这种新方法中,我们需要多次调用C模块的函数,类似于将其视为类的方法。可C语言是不支持类的,因此需要将状态信息存储在某个地方。除此以外,我们需要将“类”暴露给外部的Python程序,使其能创建“类“的实例,并调用它的方法。在“类对象“的内部我们则将其写数据的文件信息储存在”对象“的状态中。听上去就是一种面向对象的方法,不是吗?
首先,遵循"测试先行"的原则,先来看我们改造后的Python这一端,你可以每次读取音频源文件的一个数据块,将其转递给Encoder对象的encode方法,这样无论你的源文件是何种格式,你都可以在Encoder中进行自由的控制,示例代码如下:
复制代码
代码
import clame
INBUFSIZE = 4096
if __name__ == '__main__':
encoder = clame.Encoder('test.mp3')
input = file('test.raw', 'rb')
data = input.read(INBUFSIZE)
while data != '':
encoder.encode(data)
data = input.read(INBUFSIZE)
input.close()
encoder.close()
复制代码
再来看C扩展模块这一端,下面是完整的代码:
复制代码
代码
#include <Python.h>
#include <lame.h>
typedef struct {
PyObject_HEAD
FILE* outfp;
lame_global_flags* gfp;
}clame_EncoderObject;
static PyObject* Encoder_new(PyTypeObject* type, PyObject* args, PyObject* kw) {
clame_EncoderObject* self = (clame_EncoderObject* )type->tp_alloc(type, 0);
self->outfp = NULL;
self->gfp = NULL;
return (PyObject*)self;
}
static void Encoder_dealloc(clame_EncoderObject* self) {
if (self->gfp) {
lame_close(self->gfp);
}
if (self->outfp) {
fclose(self->outfp);
}
self->ob_type->tp_free(self);
}
static int Encoder_init(clame_EncoderObject* self, PyObject* args, PyObject* kw) {
char* outPath;
if (!PyArg_ParseTuple(args, "s", &outPath)) {
return -1;
}
if (self->outfp || self->gfp) {
PyErr_SetString(PyExc_Exception, "__init__ already called");
return -1;
}
self->outfp = fopen(outPath, "wb");
self->gfp = lame_init();
lame_init_params(self->gfp);
return 0;
}
static PyObject* Encoder_encode(clame_EncoderObject* self, PyObject* args) {
char* in_buffer;
int in_length;
int mp3_length;
char* mp3_buffer;
int mp3_bytes;
if (!(self->outfp || self->gfp)) {
PyErr_SetString(PyExc_Exception, "encoder not open");
return NULL;
}
if (!PyArg_ParseTuple(args, "s#", &in_buffer, &in_length)) {
return NULL;
}
in_length /= 2;
mp3_length = (int)(1.25 * in_length) + 7200;
mp3_buffer = (char*)malloc(mp3_length);
if (in_length > 0) {
mp3_bytes = lame_encode_buffer_interleaved(self->gfp, (short*)in_buffer, in_length/2, mp3_buffer, mp3_length);
if (mp3_bytes > 0) {
fwrite(mp3_buffer, 1, mp3_bytes, self->outfp);
}
}
free(mp3_buffer);
Py_RETURN_NONE;
}
static PyObject* Encoder_close(clame_EncoderObject* self) {
int mp3_length;
char* mp3_buffer;
int mp3_bytes;
if (!(self->outfp && self->gfp)) {
PyErr_SetString(PyExc_Exception, "encoder not open");
return NULL;
}
mp3_length = 7200;
mp3_buffer = (char*)malloc(mp3_length);
mp3_bytes = lame_encode_flush(self->gfp, mp3_buffer, sizeof(mp3_buffer));
if (mp3_bytes > 0) {
fwrite(mp3_buffer, 1, mp3_bytes, self->outfp);
}
free(mp3_buffer);
lame_close(self->gfp);
self->gfp = NULL;
fclose(self->outfp);
self->outfp = NULL;
Py_RETURN_NONE;
}
static PyMethodDef Encoder_methods[] = {
{"encode", (PyCFunction)Encoder_encode, METH_VARARGS, "encodes and writes data to the output file."},
{"close", (PyCFunction)Encoder_close, METH_NOARGS, "close the output file."},
{NULL, NULL, 0, NULL}
};
static PyTypeObject clame_EncoderType = {
PyObject_HEAD_INIT(NULL)
0, // ob_size
"clame.Encoder", // tp_name
sizeof(clame_EncoderObject), // tp_basicsize
0, // tp_itemsize
(destructor)Encoder_dealloc, // tp_dealloc
0, // tp_print
0, // tp_getattr
0, // tp_setattr
0, // tp_compare
0, // tp_repr
0, // tp_as_number
0, // tp_as_sequence
0, // tp_as_mapping
0, // tp_hash
0, // tp_call
0, // tp_str
0, // tp_getattro
0, // tp_setattro
0, // tp_as_buffer
Py_TPFLAGS_DEFAULT, // tp_flags
"My first encoder object.", // tp_doc
0, // tp_traverse
0, // tp_clear
0, // tp_richcompare
0, // tp_weaklistoffset
0, // tp_iter
0, // tp_iternext
Encoder_methods, // tp_methods
0, // tp_members
0, // tp_getset
0, // tp_base
0, // tp_dict
0, // tp_descr_get
0, // tp_descr_set
0, // tp_dictoffset
(initproc)Encoder_init, // tp_init
0, // tp_alloc
Encoder_new, // tp_new
0, // tp_free
};
static PyMethodDef clame_methods[] = {
{NULL, NULL, 0, NULL}
};
PyMODINIT_FUNC initclame() {
PyObject* m;
if (PyType_Ready(&clame_EncoderType) < 0) {
return;
m = Py_InitModule3("clame", clame_methods, "My second lame module.");
Py_INCREF(&clame_EncoderType);
PyModule_AddObject(m, "Encoder", (PyObject*) &clame_EncoderType);
}
复制代码
编译过程:
gcc -shared -I /usr/include/python2.6 -I /usr/local/include/lame clame.c -lmp3lame -o clame.so
首先定义了clame_EncoderObject结构体,这个结构体就是用来存储状态信息的,字段outfp用来存储输出文件,gfp则保存lame的状态,可以用来检查是否已经是重复调用已经调用过的函数了。
为了创建这个结构体的一个新实例,我们需要定义Encoder_new函数,你可以把这个函数视为Python里的__new__方法,当Python解释器需要创建你定义的类型的新实例时就会去调用这个方法。在这个方法里没作什么操作,仅仅是做初始化工作,把outfp和gfp都设置为NULL,此外,与Encoder_new函数对应,还需要定义Encoder_dealloc方法来对实例进行析构,你可以把这个函数视为Python的__del__方法,clame_EncoderType结构体则是真正定义了我们的Encoder对象,它的各个字段指定了_new,_close,_encode,_dealloc等方法。在initclame方法中,PyModuleObject则实际指定了在Python程序中使用的Encoder对象。
本文转自Phinecos(洞庭散人)博客园博客,原文链接:http://www.cnblogs.com/phinecos/archive/2010/05/23/1741860.html,如需转载请自行联系原作者