Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.
Example 1:
Input: [23, 2, 4, 6, 7], k=6 Output: True Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:
Input: [23, 2, 6, 4, 7], k=6 Output: True Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:
- The length of the array won't exceed 10,000.
- You may assume the sum of all the numbers is in the range of a signed 32-bit integer.
这道题给了我们一个数组和一个数字k,让我们求是否存在这样的一个连续的子数组,该子数组的数组之和可以整除k。遇到除法问题,我们肯定不能忘了除数为0的情况等处理。还有就是我们如何能快速的遍历所有的子数组,并且求和,我们肯定不能完全的暴力破解,这样OJ肯定不答应。我们需要适当的优化,如果是刷题老司机的话,遇到这种求子数组或者子矩阵之和的题,应该不难想到要建立累加和数组或者累加和矩阵来做。没错,这道题也得这么做,我们要遍历所有的子数组,然后利用累加和来快速求和。在得到每个子数组之和时,我们先和k比较,如果相同直接返回true,否则再判断,若k不为0,且sum能整除k,同样返回true,最后遍历结束返回false,参见代码如下:
解法一:
class Solution { public: bool checkSubarraySum(vector<int>& nums, int k) { for (int i = 0; i < nums.size(); ++i) { int sum = nums[i]; for (int j = i + 1; j < nums.size(); ++j) { sum += nums[j]; if (sum == k) return true; if (k != 0 && sum % k == 0) return true; } } return false; } };
下面这种方法用了些技巧,那就是,若数字a和b分别除以数字c,若得到的余数相同,那么(a-b)必定能够整除c。这里就不证明了,博主也不会证明。明白了这条定理,那么我们用一个集合set来保存所有出现过的余数,如果当前的累加和除以k得到的余数在set中已经存在了,那么说明之前必定有一段子数组和可以整除k。需要注意的是k为0的情况,由于无法取余,我们就把当前累加和放入set中。还有就是题目要求子数组至少需要两个数字,那么我们需要一个变量pre来记录之前的和,我们每次存入set中的是pre,而不是当前的累积和,参见代码如下:
解法二:
class Solution { public: bool checkSubarraySum(vector<int>& nums, int k) { int n = nums.size(), sum = 0, pre = 0; unordered_set<int> st; for (int i = 0; i < n; ++i) { sum += nums[i]; int t = (k == 0) ? sum : (sum % k); if (st.count(t)) return true; st.insert(pre); pre = t; } return false; } };
既然set可以做,一般来说用哈希表也可以做,这里我们建立余数和当前位置之间的映射,由于有了位置信息,我们就不需要pre变量了,之前用保存的坐标和当前位置i比较判断就可以了,参见代码如下:
解法三:
class Solution { public: bool checkSubarraySum(vector<int>& nums, int k) { int n = nums.size(), sum = 0; unordered_map<int, int> m{{0,-1}}; for (int i = 0; i < n; ++i) { sum += nums[i]; int t = (k == 0) ? sum : (sum % k); if (m.count(t)) { if (i - m[t] > 1) return true; } else m[t] = i; } return false; } };
本文转自博客园Grandyang的博客,原文链接:[LeetCode] Continuous Subarray Sum 连续的子数组之和,如需转载请自行联系原博主。