搜索附近人和商铺功能

简介: <p style="margin-top:0px; margin-bottom:10px; word-wrap:break-word; word-break:break-all; color:rgb(51,51,51); font-family:微软雅黑,Arial,Helvetica,sans-serif; font-size:14px; line-height:28px"> 越来越多

越来越多的Android应用都加入了“附近的人”的功能,比如微信、陌陌、淘宝等,今天分享一个demo,简单的来实现这一功能。主要原理为:手机端上传gps数据到服务器,服务器从数据库中查询其他用户的gps数据,分别计算2个pgs之间的距离,然后将计算好的数据返回给手机,手机进行展示。

源码下载地址: https://github.com/feicien/studydemo
手机端项目:NearByDemo
服务器端项目:NearbyServerDemo

手机端代码讲解:
MainActivity是项目的入口Activity

1
2
3
4
5
6
7
8
9
@Override
protected void onCreate(Bundle savedInstanceState) {
      boolean first = getSharedPreferences( "userinfo", Context.MODE_PRIVATE ).getBoolean( "first", false);
      if (!first) {
                Intent intent = new Intent( this, LoginActivity.class );
                startActivity(intent);
      }
          ....
     }

查看附近的人,是需要使用用户信息的,因此在OnCreate方法中先判断用户是不是第一次打开应用,如果是第一次打开应用,跳转到LoginActivity,进行用户信息登记:
用户信息登记

之后便进入MainActivity:
主界面

点击ActionBar上的附近的人,便会显示从服务器获取到的用户信息(目前服务器是把所有用户信息全部返回):
附近的人列表

请求网络使用的是Google在IO大会上才推出的Volley.

服务器端是使用Java web编写的。在这里不详细介绍了。计算距离的逻辑是从Android的提供的接口(Location.distanceBetween)中拔来的,应该是最精确的方法了

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
public static double computeDistance(double lat1, double lon1,
             double lat2, double lon2) {
             // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
             // using the "Inverse Formula" (section 4)

             int MAXITERS = 20;
             // Convert lat/long to radians
             lat1 *= Math.PI / 180.0;
             lat2 *= Math.PI / 180.0;
             lon1 *= Math.PI / 180.0;
             lon2 *= Math.PI / 180.0;

             double a = 6378137.0; // WGS84 major axis
             double b = 6356752.3142; // WGS84 semi-major axis
             double f = (a - b) / a;
             double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);

             double L = lon2 - lon1;
             double A = 0.0;
             double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
             double U2 = Math.atan((1.0 - f) * Math.tan(lat2));

             double cosU1 = Math.cos(U1);
             double cosU2 = Math.cos(U2);
             double sinU1 = Math.sin(U1);
             double sinU2 = Math.sin(U2);
             double cosU1cosU2 = cosU1 * cosU2;
             double sinU1sinU2 = sinU1 * sinU2;

             double sigma = 0.0;
             double deltaSigma = 0.0;
             double cosSqAlpha = 0.0;
             double cos2SM = 0.0;
             double cosSigma = 0.0;
             double sinSigma = 0.0;
             double cosLambda = 0.0;
             double sinLambda = 0.0;

             double lambda = L; // initial guess
             for (int iter = 0; iter < MAXITERS; iter++) {
                 double lambdaOrig = lambda;
                 cosLambda = Math.cos(lambda);
                 sinLambda = Math.sin(lambda);
                 double t1 = cosU2 * sinLambda;
                 double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
                 double sinSqSigma = t1 * t1 + t2 * t2; // (14)
                 sinSigma = Math.sqrt(sinSqSigma);
                 cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
                 sigma = Math.atan2(sinSigma, cosSigma); // (16)
                 double sinAlpha = (sinSigma == 0) ? 0.0 :
                     cosU1cosU2 * sinLambda / sinSigma; // (17)
                 cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
                 cos2SM = (cosSqAlpha == 0) ? 0.0 :
                     cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)

                 double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
                 A = 1 + (uSquared / 16384.0) * // (3)
                     (4096.0 + uSquared *
                      (-768 + uSquared * (320.0 - 175.0 * uSquared)));
                 double B = (uSquared / 1024.0) * // (4)
                     (256.0 + uSquared *
                      (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
                 double C = (f / 16.0) *
                     cosSqAlpha *
                     (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
                 double cos2SMSq = cos2SM * cos2SM;
                 deltaSigma = B * sinSigma * // (6)
                     (cos2SM + (B / 4.0) *
                      (cosSigma * (-1.0 + 2.0 * cos2SMSq) -
                       (B / 6.0) * cos2SM *
                       (-3.0 + 4.0 * sinSigma * sinSigma) *
                       (-3.0 + 4.0 * cos2SMSq)));

                 lambda = L +
                     (1.0 - C) * f * sinAlpha *
                     (sigma + C * sinSigma *
                      (cos2SM + C * cosSigma *
                       (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)

                 double delta = (lambda - lambdaOrig) / lambda;
                 if (Math.abs(delta) < 1.0e-12) {
                     break;
                 }
             }

             return  b * A * (sigma - deltaSigma);
}

下面再提供了一种更简单的方法(感谢@L给未来的自己)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
public static double getDistance(double lat1,double longt1 , double lat2,double longt2
            ) {
        double PI = 3.14159265358979323; // 圆周率
        double R = 6371229; // 地球的半径

        double x, y, distance;
        x = (longt2 - longt1) * PI * R
                * Math.cos(((lat1 + lat2) / 2) * PI / 180) / 180;
        y = (lat2 - lat1) * PI * R / 180;
        distance = Math.hypot(x, y);

        return distance;
    }

这里是把地球当成圆球来处理的

1
2
3
4
5
System.out.println(getDistance(34.8082342, 113.6125439, 34.8002478, 113.659779));
System.out.println(computeDistance(34.8082342, 113.6125439, 34.8002478, 113.659779));

4403.3428631300785
4412.121706417052

经过测试,对于4千米的2点,相差为10米左右,误差是可以接受的,因此推荐使用该方法。

目录
相关文章
|
SQL 小程序 JavaScript
【易售小程序项目】小程序首页(展示商品、商品搜索、商品分类搜索)【后端基于若依管理系统开发】
【易售小程序项目】小程序首页(展示商品、商品搜索、商品分类搜索)【后端基于若依管理系统开发】
57 0
|
2月前
|
存储 编解码 定位技术
推荐5款压箱底的宝贝,某度搜索就有
本文推荐了五款实用软件:1. WinDynamicDesktop,根据时间和地理位置自动更换桌面壁纸;2. NeeView,功能强大的图像浏览器,支持多种格式和便捷操作;3. 3171.cn,在线工具集网站,涵盖视频、音频、图片编辑等多种功能;4. Moo0VideoMinimizer,高效视频压缩软件,便于存储和分享;5. GnuCash,开源财务管理软件,帮助个人和小企业轻松管理财务。
29 0
|
3月前
|
API 数据安全/隐私保护 开发者
Lazada按关键字搜索商品技术详解
Lazada是东南亚领先的电商平台,为用户带来多样化的购物选择。本文指导开发者如何利用Lazada API自动搜索商品数据。首先需注册开发者账号并获取API密钥;随后阅读API文档,安装所需库(如Python的requests)。重点介绍item_search接口,通过关键字搜索商品并获取详细信息,包括标题、图片、价格等。提供Python示例代码,展示如何构建请求及解析响应数据。请注意API使用限制和数据安全。此工具助力电商分析与商品推荐系统开发。
|
搜索推荐 Java 数据库
淘东电商项目(46) -商品搜索服务功能的实现
淘东电商项目(46) -商品搜索服务功能的实现
52 0
|
存储
【 uniapp - 黑马优购 | 搜索框 】如何实现自定义搜索组件、搜索建议、搜索历史
【 uniapp - 黑马优购 | 搜索框 】如何实现自定义搜索组件、搜索建议、搜索历史
570 0
|
前端开发
47分布式电商项目 - 商品关键字搜索
47分布式电商项目 - 商品关键字搜索
39 0
47分布式电商项目 - 商品关键字搜索
|
搜索推荐 算法 小程序
微信搜索流量怎么做
微信搜索流量怎么做
68 0
微信搜索流量怎么做
|
XML JSON 缓存
Java实现关键词搜索获取淘宝店铺列表数据方法
Java实现关键词搜索获取淘宝店铺列表数据方法
|
数据采集
苏宁易购关键词搜索商品方法
苏宁易购关键词搜索商品方法
101 0
|
数据采集 算法框架/工具
关键词搜索商品(精准控价)
关键词搜索商品(精准控价)
160 0