牛顿迭代法

简介: 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。牛顿迭代公式    设r是\(f(x)=0\)的根,选取\(x_0\)作为r的初始近似值,过点\((x_0,f(x_0))\),做曲线\(y=f(x)\)的切线L,L的方程为\(y=f(x_0)+f’(x_0)(x-x_0)\),求出L与x轴交点的横坐标\[x_1=x_0-\frac{f(x_0)}{f’(x_0)}\]    称\(x_1\)为r的一次近似值。

     牛顿迭代法Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

牛顿迭代公式

    设r是\(f(x)=0\)的根,选取\(x_0\)作为r的初始近似值,过点\((x_0,f(x_0))\) ,做曲线 \(y=f(x)\)的切线L,L的方程为\(y=f(x_0)+f’(x_0)(x-x_0)\) ,求出L与x轴交点的横坐标

\[x_1=x_0-\frac{f(x_0)}{f’(x_0)}\]

    称\(x_1\)为r的一次近似值。过点\((x_1,f(x_1))\) 做曲线 \(y=f(x)\)的切线,并求该切线与x轴交点的横坐标

\[x_2=x_1-\frac{f(x_1)}{f’(x_1)}\]

    称\(x_2\)为r的二次近似值。重复以上过程,得r的近似值序列,其中,

\[x_{n+1}=x_n-\frac{f(x_n)}{f’(x_n)}\]

    称为r的\(n+1\)次近似值,上式称为牛顿迭代公式

    用牛顿迭代法解非线性方程,是把非线性方程\(f(x)=0\)线性化的一种近似方法。把 \(f(x)\)在点 \(x_0\)的某邻域内展开成泰勒级数

\[f(x)=f(x_0)+f’(x_0)(x-x_0)+\frac{f’’(x_0)(x-x_0)^2}{2!}+…+\frac{f^{(n)}(x_0)(x-x_0)^n}{n!}+R_n(x)\]

     取其线性部分(即泰勒展开的前两项),并令其等于0,即 \(f(x_0)+f’(x_0)(x-x_0)=0\),以此作为非线性方程 \(f(x)=0\)的近似方程,若\(f’(x_0)\neq0\),则其解为

\[x_1=x_0-\frac{f(x_0)}{f’(x_0)}\]

     这样,得到牛顿迭代法的一个迭代关系式:

\[x_{n+1}=x_n-\frac{f(x_n)}{f’(x_n)}\]

    从下面的图中,我们可以看到牛顿迭代的几何意义,每次迭代,都会更加逼近\(f(x)=0\)的解。

img_a3eb93fc70dd437946ab3784c0fcf33a.jpg

     下面用牛顿迭代法在matlib解出方程\(x^2+2xe^x+e^{2x}=0\)的根,首先画出函数的图像,猜测根的大致位置。

函数图像如下图所示:

image

近似结果:

image

x=-1:0.01:1;
y= x.^2+2*x.*exp(x)+exp(2*x)
plot(x,y);
grid on;
clc;clear;
%syms x;
%diff(x^2+2*x*exp(x)+exp(2*x),x,1)
%clear;
x=0.0
for i=1:100
    x1=x-(x^2+2*x*exp(x)+exp(2*x))/(2*x + 2*exp(2*x) + 2*exp(x) + 2*x*exp(x))
    if(abs(x1-x)>0.0001)
        x=x1;
    else
        break;
    end
end
i
View Code
相关文章
|
8月前
迭代法求一元三次方程
迭代法求一元三次方程
94 0
|
8月前
|
C++
C++代码实现Jacobi迭代法
C++代码实现Jacobi迭代法
215 0
|
8月前
|
人工智能 Java BI
快速幂讲解
快速幂讲解
57 0
|
算法 搜索推荐 程序员
欧几里得算法
欧几里得算法(Euclidean algorithm)是一种计算两个数的最大公约数(Greatest Common Divisor,简称 GCD)的算法。欧几里得算法的基本思想是通过辗转相除的方式,将两个数逐步缩小,直到它们的公约数为止。欧几里得算法的时间复杂度为 O(log n)。
251 1
数学问题之(矩阵加速递推快速幂)
数学问题之(矩阵加速递推快速幂)
|
物联网
快速幂
快速幂
89 0
雅克比迭代法求解线性方程组
雅克比迭代法求解线性方程组
130 0
每日一题1021:迭代法求平方根
题目描述: 用迭代法求 平方根 公式:求a的平方根的迭代公式为: X[n+1]=(X[n]+a/X[n])/2 要求前后两次求出的差的绝对值少于0.00001。 输出保留3位小数
173 0