论文笔记之:Natural Language Object Retrieval

简介: 论文笔记之:Natural Language Object Retrieval2017-07-10  16:50:43     本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别。大致流程图如下:     此处,作者强调了一点不同之处:  Natural language ob...

论文笔记之:Natural Language Object Retrieval

2017-07-10  16:50:43  

 

  本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别。大致流程图如下:

  

 

  此处,作者强调了一点不同之处:

  Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects within the scene and global scene context. (自然语言物体的检索 与 基于文本的图像检索任务 是不同的,因为其涉及到:在场景内部的关于物体的空间信息,以及全局的场景信息)。本文通过 recurrent network 来实现 query text, local image descriptor, spatial configurations and global context features,然后输出是:文本和 proposal 之间的相符程度的得分。与此同时,也可以将 visual-linguistic knowledge 从 image caption 领域借鉴到我们的任务当中。

  作者发现:简单的将 text-based image retrieval system 来直接做这个任务,得到的效果并不是非常好,因为自然语言物体检索涉及到 物体的空间信息 以及 场景中全局信息。利用 RNN 作为 scoring function有如下的好处:

  1. 整个模型可以通过 反向传播 来进行end to end 的训练,使得 visual feature extraction 和 text sequence embedding 可以相互影响。实验表明这种方向比 bag of words 效果要好很多。

  2. 可以很简单的利用 大型 image-text datasets 来学习一个 vision-language model 来协助该任务的完成。

  

  但是,这个任务有一个比较大的挑战是:the lack of large scale datasets with annotated object bounding box and description pairs. 

  To address this issue, we show that it allows us to transfer visual-linguistic knowledge learned from the former task to the latter one by first pretraining on the image caption domain and then adapting it to the natural language object retrieval domain. 
  这种 pre-training 和 adaptation 的过程不但提升了性能,而且避免了过拟合,特别是当 the object retrieval training dataset 比较小的时候。

  

  本文的网络结构 和 大致示意图 如下所示:

  

 

  训练所用到的损失函数为: 

  

 

 


 

   简单而言,其实就是:

  利用给定的图像,BBOX的位置信息,以及检索的语言。。。

  然后基于此给出一个网络结构的预测,在去比较该结果和给定的语言描述之间的 loss 。。。

  从而完成整个网络的训练。。。。

  

  在测试的时候,就可以将 proposal 替换掉 原始 GT image  patch,然后就可以利用这个语言模型,给各个 proposal 进行打分了。。。

  最终选择一个最佳的 proposal 作为检测的结果。。。

  

 

  

相关文章
|
1月前
|
机器学习/深度学习 Web App开发 编解码
论文精度笔记(四):《Sparse R-CNN: End-to-End Object Detection with Learnable Proposals》
Sparse R-CNN是一种端到端的目标检测方法,它通过使用一组可学习的稀疏提议框来避免传统目标检测中的密集候选框设计和多对一标签分配问题,同时省去了NMS后处理步骤,提高了检测效率。
40 0
论文精度笔记(四):《Sparse R-CNN: End-to-End Object Detection with Learnable Proposals》
|
1月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
33 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
1月前
|
机器学习/深度学习 人工智能 编解码
论文精度笔记(一):《ZERO-SHOT DETECTION WITH TRANSFERABLE OBJECT PROPOSAL MECHANISM》
本论文提出了一种零样本检测方法,通过引入可转移的对象候选机制来关联类别间的共现关系,并使用所有类的置信度分布进行对象置信度预测,以提高对未见类别物体的检测性能。
32 3
论文精度笔记(一):《ZERO-SHOT DETECTION WITH TRANSFERABLE OBJECT PROPOSAL MECHANISM》
|
1月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
47 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
前端开发
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用1
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用1
51 0
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用1
|
6月前
|
JavaScript 前端开发 Java
编程笔记 html5&css&js 073 JavaScript Object数据类型
编程笔记 html5&css&js 073 JavaScript Object数据类型
|
前端开发
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用2
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用2
47 0
|
前端开发
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用4深度拷贝
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用4深度拷贝
39 0
|
前端开发
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用3
前端学习笔记202306学习笔记第四十天-Es6-object.assign的使用3
38 0
|
10天前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
50 4

热门文章

最新文章