引子:线程死锁曾是多少程序员的噩梦,每每为此食不甘味,夜不成寐,一句话:苦不堪言。本文从几个场景入手,试图解开产生死锁的原因之谜。
教科书:说的很具体,理解很抽象
关于死锁产生的原因《操作系统》中有比较好的说明:
(1)因为系统资源不足。
(2)进程运行推进的顺序不合适。
(3)资源分配不当等。
关于死锁出现的必要条件也有比较具体的说明:
(1)互斥条件:一个资源每次只能被一个进程使用。
(2)请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3)不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4)循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,这也为我们实际应用中定位死锁问题,提供了路由。
情景一、不加锁,两线程访问,变量访问示例
关于死锁,有锁才能死,如果我们不加锁,自然不会发生死锁,但是如果不加锁,对资源的访问,将会发生什么情况呢。不妨看下面的例子:
当两个线程读写相同变量时,线程A读取变量然后给予变量赋予一个新的值,但是写操作需要两个存储器周期。当线程B在这两个存储器周期中间读取这个相同变量时,它就会得到不一致的值。这就是为什么要对多线程资源访问进行加锁,加锁以后的访问顺序就变成了顺序访问,从而可以避免资源的不一致访问。
情景二、不加锁,多线程访问,增量操作示例
当两个或多个线程试图在同一时间修改同一个变量时,如果不加锁也会出现数据资源不一致的情况。如下图所示:
我们可以看到,增量操作分为三个步骤进行:(1)从内存单元读入寄存器。(2)从寄存器中进行变量值的增加。(3)把新的值写回内存单元。如果两个线程试图同时对统一变量执行增量操作时,结果可能出现不一致。变量可能比原来增加了1,也可能增加了2,具体是1,还是2取决于第二个线程读取变量时获得的值是5还是6。这里面有一个前提就是变量增加的操作不是原子操作,这是因为现代计算机系统中,存储器访问需要多个总线周期,多处理器的总线周期通常在多个处理器上是交叉的,所以无法保证数据时顺序一致的。
情景三、互斥锁,多变量部分锁
以上示例已经讲明了我们为何需要线程锁,不加锁将会导致数据资源访问的不一致。可是加锁后,如果存在满足死锁的必要条件,又会产生死锁,我们该怎么办呢?不妨先来看一个示例:
#include <stdlib.h>
#include <pthread.h>
#define NHASH 29
#define HASH(fp) (((unsigned long)fp)%NHASH)
struct foo *fh[NHASH];
pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;
struct foo {
int f_count;
pthread_mutex_t f_lock;
struct foo *f_next; /* protected by hashlock */
int f_id;
/* ... more stuff here ... */
};
struct foo *
foo_alloc(void) /* allocate the object */
{
struct foo *fp;
int idx;
if ((fp = malloc(sizeof(struct foo))) != NULL) {
fp->f_count = 1;
if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {
free(fp);
return(NULL);
}
idx = HASH(fp);
pthread_mutex_lock(&hashlock);
fp->f_next = fh[idx];
fh[idx] = fp->f_next;
pthread_mutex_lock(&fp->f_lock);
pthread_mutex_unlock(&hashlock);
/* ... continue initialization ... */
pthread_mutex_unlock(&fp->f_lock);
}
return(fp);
}
//增加
void
foo_hold(struct foo *fp) /* add a reference to the object */
{
pthread_mutex_lock(&fp->f_lock);
fp->f_count++;
pthread_mutex_unlock(&fp->f_lock);
}
//查找已经对象
struct foo *
foo_find(int id) /* find an existing object */
{
struct foo *fp;
int idx;
idx = HASH(fp);
pthread_mutex_lock(&hashlock);
for (fp = fh[idx]; fp != NULL; fp = fp->f_next) {
if (fp->f_id == id) {
foo_hold(fp);
break;
}
}
pthread_mutex_unlock(&hashlock);
return(fp);
}
//减小
void
foo_rele(struct foo *fp) /* release a reference to the object */
{
struct foo *tfp;
int idx;
pthread_mutex_lock(&fp->f_lock);
if (fp->f_count == 1) { /* last reference */
pthread_mutex_unlock(&fp->f_lock); //如果不解锁会怎么样呢?
pthread_mutex_lock(&hashlock); //如果顺序发生变化呢?
pthread_mutex_lock(&fp->f_lock);
/* need to recheck the condition */
if (fp->f_count != 1) {
fp->f_count--;
pthread_mutex_unlock(&fp->f_lock);
pthread_mutex_unlock(&hashlock);
return;
}
/* remove from list */
idx = HASH(fp);
tfp = fh[idx];
if (tfp == fp) {
fh[idx] = fp->f_next;
} else {
while (tfp->f_next != fp)
tfp = tfp->f_next;
tfp->f_next = fp->f_next;
}
pthread_mutex_unlock(&hashlock);
pthread_mutex_unlock(&fp->f_lock);
pthread_mutex_destroy(&fp->f_lock);
free(fp);
} else {
fp->f_count--;
pthread_mutex_unlock(&fp->f_lock);
}
}
以上代码注意加锁的顺序,如果顺序错了,则会有可能出现死锁。