静态单图
import numpy as np import matplotlib.pyplot as plt # 号码热力图 pre = 49 a = np.random.randint(49, size=pre) + 1 # 模拟前期数据(这里不妨取49) import collections c = collections.Counter(a).most_common() # 统计次数 d = np.zeros(49) for i, x in c: d[i-1] = x image = d.reshape(7,7) # 构造成一个图像 plt.imshow(image, cmap=plt.cm.hot) # 画热力图 plt.colorbar() #plt.imshow(image, cmap=plt.cm.hot, interpolation="nearest") #plt.colorbar() # 为了方便,把号码也对应显示 xx, yy = np.meshgrid(np.arange(7), np.arange(7)) for i, (x, y) in enumerate(zip(xx.flatten(), yy.flatten())): c = str(i+1) plt.text(x, y, c, va='center', ha='center') plt.show()
另一个动态的热力图
import numpy as np import matplotlib.pyplot as plt import collections '''动态号码热力图''' #plt.imshow(image, cmap=plt.cm.hot, interpolation="nearest") #plt.colorbar() # 为了方便,把号码也对应显示 xx, yy = np.meshgrid(np.arange(7), np.arange(7)) for i, (x, y) in enumerate(zip(xx.flatten(), yy.flatten())): c = str(i+1) plt.text(x, y, c, va='center', ha='center') # 根据前面历史数据,构造成一个图像 def build_image(a_list): c = collections.Counter(a_list).most_common() # 统计次数 d = np.zeros(49) for i, x in c: d[i-1] = x image = d.reshape(7,7) # 构造成一个图像 return image for i in range(100): if i == 0: # 号码热力图 pre = 49 a_list = np.random.randint(49, size=pre) + 1 # 模拟前期数据(这里不妨取49) image = build_image(a_list) im = plt.imshow(image, cmap=plt.cm.hot) # 画热力图 plt.colorbar() else: a_list = np.hstack((a_list[1:], np.random.randint(49)+1)) image = build_image(a_list) im.set_data(image) plt.pause(0.1)