递归神经网络 简单示例

简介: 找到一个递归神经网络的例子,没看懂。先保存,慢慢看。原文# Recurrent Neural Networksimport copy, numpy as npnp.random.seed(0)# compute sigmoid nonlinearitydef sigmoid(x): output = 1/(1+np.

找到一个递归神经网络的例子,没看懂。

先保存,慢慢看。

原文

# Recurrent Neural Networks

import copy, numpy as np
np.random.seed(0)

# compute sigmoid nonlinearity
def sigmoid(x):
    output = 1/(1+np.exp(-x))
    return output

# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
    return output*(1-output)


# training dataset generation
int2binary = {}
binary_dim = 8

largest_number = pow(2,binary_dim)
binary = np.unpackbits(
    np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
    int2binary[i] = binary[i]


# input variables
alpha = 0.1

input_dim = 2
hidden_dim = 16
output_dim = 1


# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1

synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

# training logic
for j in range(10000):
    
    # generate a simple addition problem (a + b = c)
    a_int = np.random.randint(largest_number/2) # int version
    a = int2binary[a_int] # binary encoding

    b_int = np.random.randint(largest_number/2) # int version
    b = int2binary[b_int] # binary encoding

    # true answer
    c_int = a_int + b_int
    c = int2binary[c_int]
    
    # where we'll store our best guess (binary encoded)
    d = np.zeros_like(c)

    overallError = 0
    
    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
    
    # moving along the positions in the binary encoding
    for position in range(binary_dim):
        
        # generate input and output
        X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T

        # hidden layer (input ~+ prev_hidden)
        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))

        # output layer (new binary representation)
        layer_2 = sigmoid(np.dot(layer_1,synapse_1))

        # did we miss?... if so, by how much?
        layer_2_error = y - layer_2
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        overallError += np.abs(layer_2_error[0])
    
        # decode estimate so we can print(it out)
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
        
        # store hidden layer so we can use it in the next timestep
        layer_1_values.append(copy.deepcopy(layer_1))
    
    future_layer_1_delta = np.zeros(hidden_dim)
    
    for position in range(binary_dim):
        
        X = np.array([[a[position],b[position]]])
        layer_1 = layer_1_values[-position-1]
        prev_layer_1 = layer_1_values[-position-2]
        
        # error at output layer
        layer_2_delta = layer_2_deltas[-position-1]
        # error at hidden layer
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)

        # let's update all our weights so we can try again
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
        
        future_layer_1_delta = layer_1_delta
    

    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha    

    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
    
    # print(out progress)
    if j % 1000 == 0:
        print("Error:" + str(overallError))
        print("Pred:" + str(d))
        print("True:" + str(c))
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print(str(a_int) + " + " + str(b_int) + " = " + str(out))
        print("------------")

        
目录
相关文章
|
6月前
|
机器学习/深度学习 算法 大数据
神经网络之超参数
超参数在神经网络的设计和训练中起着至关重要的作用。它们是在开始训练之前设置的参数,与网络的结构、训练过程和优化算法有关。正确的超参数选择对于达到最优模型性能至关重要。
70 1
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
神经网络参数初始化
**神经网络参数初始化**是深度学习的关键步骤。权重常通过**Xavier**或**He**初始化来打破对称性,适用于ReLU激活;而偏置通常初始化为0。初始化方法还包括**均匀分布**、**正态分布**、**全零**、**全一**和**固定值**。在PyTorch中,`torch.nn.init`模块提供了如`xavier_uniform_`和`kaiming_normal_`等初始化函数。预训练模型也可用于初始化,通过微调提升性能。
|
机器学习/深度学习 算法 TensorFlow
【深度学习】实验05 构造神经网络示例
【深度学习】实验05 构造神经网络示例
56 0
|
机器学习/深度学习 自然语言处理 算法
几种类型神经网络学习笔记
几种类型神经网络学习笔记
|
机器学习/深度学习 自然语言处理 算法
通过展开序列ISTA(SISTA)算法创建的递归神经网络(RNN)(Matlab代码实现)
通过展开序列ISTA(SISTA)算法创建的递归神经网络(RNN)(Matlab代码实现)
136 0
|
机器学习/深度学习 数据采集 PyTorch
为什么说神经网络可以逼近任意函数?
为什么说神经网络可以逼近任意函数?
259 0
为什么说神经网络可以逼近任意函数?
|
机器学习/深度学习 数据挖掘 PyTorch
初始化神经网络权重的方法总结
初始化神经网络权重的方法总结
265 0
初始化神经网络权重的方法总结
|
机器学习/深度学习 开发框架 .NET
多层感知器(神经网络)的代码实现 | 学习笔记
快速学习多层感知器(神经网络)的代码实现
多层感知器(神经网络)的代码实现 | 学习笔记
|
机器学习/深度学习
【3】感知机结构与反向传播推导
【3】感知机结构与反向传播推导
125 0
【3】感知机结构与反向传播推导
|
机器学习/深度学习
图神经网络 —— 排列不变函数
图神经网络 —— 排列不变函数
151 0