递归神经网络 简单示例

简介: 找到一个递归神经网络的例子,没看懂。先保存,慢慢看。原文# Recurrent Neural Networksimport copy, numpy as npnp.random.seed(0)# compute sigmoid nonlinearitydef sigmoid(x): output = 1/(1+np.

找到一个递归神经网络的例子,没看懂。

先保存,慢慢看。

原文

# Recurrent Neural Networks

import copy, numpy as np
np.random.seed(0)

# compute sigmoid nonlinearity
def sigmoid(x):
    output = 1/(1+np.exp(-x))
    return output

# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
    return output*(1-output)


# training dataset generation
int2binary = {}
binary_dim = 8

largest_number = pow(2,binary_dim)
binary = np.unpackbits(
    np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
    int2binary[i] = binary[i]


# input variables
alpha = 0.1

input_dim = 2
hidden_dim = 16
output_dim = 1


# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1

synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

# training logic
for j in range(10000):
    
    # generate a simple addition problem (a + b = c)
    a_int = np.random.randint(largest_number/2) # int version
    a = int2binary[a_int] # binary encoding

    b_int = np.random.randint(largest_number/2) # int version
    b = int2binary[b_int] # binary encoding

    # true answer
    c_int = a_int + b_int
    c = int2binary[c_int]
    
    # where we'll store our best guess (binary encoded)
    d = np.zeros_like(c)

    overallError = 0
    
    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
    
    # moving along the positions in the binary encoding
    for position in range(binary_dim):
        
        # generate input and output
        X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T

        # hidden layer (input ~+ prev_hidden)
        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))

        # output layer (new binary representation)
        layer_2 = sigmoid(np.dot(layer_1,synapse_1))

        # did we miss?... if so, by how much?
        layer_2_error = y - layer_2
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        overallError += np.abs(layer_2_error[0])
    
        # decode estimate so we can print(it out)
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
        
        # store hidden layer so we can use it in the next timestep
        layer_1_values.append(copy.deepcopy(layer_1))
    
    future_layer_1_delta = np.zeros(hidden_dim)
    
    for position in range(binary_dim):
        
        X = np.array([[a[position],b[position]]])
        layer_1 = layer_1_values[-position-1]
        prev_layer_1 = layer_1_values[-position-2]
        
        # error at output layer
        layer_2_delta = layer_2_deltas[-position-1]
        # error at hidden layer
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)

        # let's update all our weights so we can try again
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
        
        future_layer_1_delta = layer_1_delta
    

    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha    

    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
    
    # print(out progress)
    if j % 1000 == 0:
        print("Error:" + str(overallError))
        print("Pred:" + str(d))
        print("True:" + str(c))
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print(str(a_int) + " + " + str(b_int) + " = " + str(out))
        print("------------")

        
目录
相关文章
|
1天前
|
人工智能 运维 安全
|
4天前
|
SpringCloudAlibaba 负载均衡 Dubbo
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
本文对比分析了SpringCloudAlibaba框架下Feign与Dubbo的服务调用性能及差异。Feign基于HTTP协议,使用简单,适合轻量级微服务架构;Dubbo采用RPC通信,性能更优,支持丰富的服务治理功能。通过实际测试,Dubbo在调用性能、负载均衡和服务发现方面表现更出色。两者各有适用场景,可根据项目需求灵活选择。
376 124
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
|
6天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
611 107
|
3天前
|
Java 数据库 数据安全/隐私保护
Spring 微服务和多租户:处理多个客户端
本文介绍了如何在 Spring Boot 微服务架构中实现多租户。多租户允许单个应用实例为多个客户提供独立服务,尤其适用于 SaaS 应用。文章探讨了多租户的类型、优势与挑战,并详细说明了如何通过 Spring Boot 的灵活配置实现租户隔离、动态租户管理及数据源路由,同时确保数据安全与系统可扩展性。结合微服务的优势,开发者可以构建高效、可维护的多租户系统。
198 127
|
3天前
|
Web App开发 前端开发 API
在折叠屏应用中,如何处理不同屏幕尺寸和设备类型的样式兼容性?
在折叠屏应用中,如何处理不同屏幕尺寸和设备类型的样式兼容性?
224 124
|
3天前
|
人工智能 数据可视化 测试技术
Coze平台指南(3):核心功能-创建智能体与设计角色
Coze 智能体是由大语言模型驱动,通过提示词设定角色,并借助知识库、插件和工作流扩展能力,以执行特定任务的AI助手。对测试工程师而言,精心设计的智能体可显著提升测试效率与质量,关键是要准确理解测试需求,并将其转化为智能体的角色设定和功能配置。建议进一步学习知识库与工作流,以深化应用。
|
7天前
|
JSON fastjson Java
FastJson 完全学习指南(初学者从零入门)
摘要:本文是FastJson的入门学习指南,主要内容包括: JSON基础:介绍JSON格式特点、键值对规则、数组和对象格式,以及嵌套结构的访问方式。FastJson是阿里巴巴开源的高性能JSON解析库,具有速度快、功能全、使用简单等优势,并介绍如何引入依赖,如何替换Springboot默认的JackJson。 核心API: 序列化:将Java对象转换为JSON字符串,演示对象、List和Map的序列化方法; 反序列化:将JSON字符串转回Java对象,展示基本对象转换方法;