poj 1631 Bridging signals【最长上升子序列】

简介: 点击打开链接 Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10951   Accepted: 6000 Descriptio...

点击打开链接

Bridging signals
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10951   Accepted: 6000

Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place. At this late stage of the process, it is too expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without crossing each other, is imminent. Bearing in mind that there may be thousands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task? 

A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number specifies which port on the right side should be connected to the i:th port on the left side.Two signals cross if and only if the straight lines connecting the two ports of each pair do.

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p < 40000, the number of ports on the two functional blocks. Then follow p lines, describing the signal mapping:On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.

Sample Input

4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6

Sample Output

3
9
1
4
题目翻译:题目说的啥翻译起来不重要了,第一个数据t代表t组数据,然后每组数据有一个n,紧接着有n个数字,分别是1-n的错乱排序,然后求这个序列的最长上升子序列。

解题思路:用暴力解决超时,于是在查找插入的时候采用2分法,轻松解决问题。

#include<stdio.h>
int a[40000],t,n,num,res,i,w;
int Q(int left,int right,int path){
    int mid;
    while(left<=right){
        mid=(left+right)/2;
        if(a[mid]<path) left=mid+1;
        else  right=mid-1;
   }return right;
}
int main(){
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        scanf("%d",&num);
        a[0]=num;
        res=1;
        for(i=1;i<n;i++){
            scanf("%d",&num);
            if(num>a[res-1]) a[res++]=num;
            else if(num<a[res-1]){
                w=Q(0,res-1,num);
                a[w+1]=num;
            }
        }
        printf("%d\n",res);
    }return 0;
}
神一般的STL

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[40000],t,n,num,res,i,w;
int main(){
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        scanf("%d",&num);
        a[0]=num;
        res=1;
        for(i=1;i<n;i++){
            scanf("%d",&num);
            if(num>a[res-1]) a[res++]=num;
            else if(num<a[res-1]){
                w=lower_bound(a,a+res,num)-a;
                a[w]=num;
            }
        }
        printf("%d\n",res);
    }return 0;
}

STL最简版

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[40000],t,n,num,i,k,size;
int main(){
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        for(i=0,size=0;i<n;i++){
            scanf("%d",&num);
            k=lower_bound(a,a+size,num)-a;
            a[k]=num;
            size=max(size,k+1);
        }
        printf("%d\n",size);
    }return 0;
}

目录
相关文章
【动态规划刷题 15】最长定差子序列&& 最长的斐波那契子序列的长度
【动态规划刷题 15】最长定差子序列&& 最长的斐波那契子序列的长度
|
3月前
acwing 895 最长上升子序列1
acwing 895 最长上升子序列1
42 3
|
3月前
acwing 896 最长上升子序列II
acwing 896 最长上升子序列II
36 2
|
3月前
合唱队行 (最长上升子序列)
合唱队行 (最长上升子序列)
31 0
|
算法 JavaScript Go
【动态规划】最长递增子序列
【动态规划】最长递增子序列
|
算法
【学会动态规划】 最长递增子序列(26)
【学会动态规划】 最长递增子序列(26)
51 0
深入理解动态规划算法 - 最长公共子序列
深入理解动态规划算法 - 最长公共子序列
83 0
力扣1143. 最长公共子序列 动态规划之最长公共子序列
力扣1143. 最长公共子序列 动态规划之最长公共子序列
204 0
力扣1143. 最长公共子序列 动态规划之最长公共子序列
|
人工智能 算法
Acwing 896. 最长上升子序列 II
Acwing 896. 最长上升子序列 II
99 0
|
存储 人工智能 算法
『动态规划』最长上升子序列
输入母串的长度 循环输入母串数组以及母串的状态数组并初始化 外层循环,从左往右遍历,记录待更新数组为a[i] 里层循环,遍历母串的左闭右开区间[0,i),找到比a[i]小且状态值最大的数,更新a[i]的状态数组b[i] 用一个变量max记录状态数组b[i]的最大值就是最大子序列的数量
153 0