English learning

简介: 1.Strong recommend:   http://www.englishclub.com/   http://www.talkenglish.com/   http://www.putclub.
1.Strong recommend:
2.Reading:
   http://www.cdlponline.org/  (Audlt learning)
   http://www.usalearns.org (Recommend)
   http://public.wsu.edu/~brians/errors/errors.html#errors (Common errors in English usage)

3.News:

4.Dictionary:
5.Other:
6.All of english website summary:
目录
相关文章
|
数据采集 机器学习/深度学习 自然语言处理
Masked Language Modeling,MLM
Masked Language Modeling(MLM)是一种预训练语言模型的方法,通过在输入文本中随机掩盖一些单词或标记,并要求模型预测这些掩盖的单词或标记。MLM 的主要目的是训练模型来学习上下文信息,以便在预测掩盖的单词或标记时提高准确性。
600 1
|
5月前
|
存储 算法 计算机视觉
【博士每天一篇文献-模型】Meta-Learning Based Tasks Similarity Representation for Cross Domain Lifelong Learning
本文提出了一种基于元学习的跨域终身学习框架,通过跨域三元组网络(CDTN)学习任务间的相似性表示,并结合自注意模块与软注意网络(SAN)来增强特征提取和任务权重分配,以提高学习效率并减少对先前知识的遗忘。
53 1
【博士每天一篇文献-模型】Meta-Learning Based Tasks Similarity Representation for Cross Domain Lifelong Learning
|
8月前
|
机器学习/深度学习 数据采集 自然语言处理
[GPT-2]论文解读:Language Models are Unsupervised Multitask Learners
[GPT-2]论文解读:Language Models are Unsupervised Multitask Learners
347 1
|
8月前
|
Python
[UNILM]论文实现:Unified Language Model Pre-training for Natural Language.........
[UNILM]论文实现:Unified Language Model Pre-training for Natural Language.........
52 0
|
自然语言处理 数据挖掘 数据处理
【提示学习】Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文基于PVP,提出PET与iPET,但是关注点在利用半监督扩充自己的数据集,让最终模型学习很多样本,从而达到好效果。
132 0
|
机器学习/深度学习 语音技术
“Zero-shot Learning”、“One-shot Learning”和“Few-shot Learning”
你知道吗?在机器学习的世界里,有一种名为“Zero-shot Learning”、“One-shot Learning”和“Few-shot Learning”的策略,它们主要是为了解决神经网络模型因为训练数据少,导致模型泛化能力差的问题。
297 1
|
机器学习/深度学习 存储 人工智能
大语言模型的预训练[3]之Prompt Learning:Prompt Engineering、Answer engineering、Multi-prompt learning、Training strategy详解
大语言模型的预训练[3]之Prompt Learning:Prompt Engineering、Answer engineering、Multi-prompt learning、Training strategy详解
大语言模型的预训练[3]之Prompt Learning:Prompt Engineering、Answer engineering、Multi-prompt learning、Training strategy详解
|
人工智能 数据可视化 决策智能
【CAMEL】Communicative Agents for “Mind”Exploration of Large Scale Language Model Society
【CAMEL】Communicative Agents for “Mind”Exploration of Large Scale Language Model Society
362 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
164 0
|
自然语言处理 数据挖掘
【论文解读】Do Prompts Solve NLP Tasks Using Natural Language?
提示学习实现文本分类的各类方法对比的论文
104 0