泛函的延拓

简介: 设 $M$ 是 Hilbert 空间 $H$ 的线性子空间. $T$ 是 $M$ 上的有界线性算子. 证明在 $H$ 上存在一个有界线性算子 $\tilde T$, 使得在 $M$ 上 $\tilde T$ 与 $T$ 相等并且 $\sen{\tilde T}\leq \sen{T}$.

设 $M$ 是 Hilbert 空间 $H$ 的线性子空间. $T$ 是 $M$ 上的有界线性算子. 证明在 $H$ 上存在一个有界线性算子 $\tilde T$, 使得在 $M$ 上 $\tilde T$ 与 $T$ 相等并且 $\sen{\tilde T}\leq \sen{T}$.

 

证明:  作 $M$ 的闭包 $\bar M$ 的正交补 $\bar M^\perp$, 并定义\footnote{ $\tilde T$ 在 $\bar M\bs M$ 上是良定义的: 设 $$\bex M\ni x_n\to x_0,\quad M\ni y_n\to x_0, \eex$$ 则有 $$\bex ||Tx_n-Tx_m||\leq ||T||\cdot ||x_n-x_m||,\quad ||Tx_n-Ty_n||\leq ||T||\cdot ||x_n-y_n|| \eex$$ 知 $\sed{T_n}$ 极限存在, 且极限值不依赖于所选取的逼近序列.} $$\bex \tilde T(x)=\left\{\ba{ll} Tx,&x\in M,\\ \lim Tx_n,&x\in \bar M\bs M,\\ 0,&x\in \bar M^\perp. \ea\right. \eex$$ 如此, $$\beex \bea \sen{\tilde Tx} &=\sen{\tilde T(y+z)}\quad\sex{y\in \bar M,\ z\in \bar M^\perp,\mbox{ 由正交分解}}\\ &=\sen{\tilde Ty}\\ &=\sen{Ty}\\ &\leq\sen{T}_M\sen{y}\\ &\leq \sen{T}_M\sen{x}\quad\sex{\forall\ x\in H}. \eea \eeex$$  

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
810 0
|
机器学习/深度学习 算法 机器人
图文详解牛顿迭代法,牛顿不止力学三定律
图文详解牛顿迭代法,牛顿不止力学三定律
358 0
图文详解牛顿迭代法,牛顿不止力学三定律
广义动量定理之于科斯定理——《可以量化的经济学》
广义动量定理之于科斯定理——《可以量化的经济学》 理论简介:科斯定理(Coase theorem)是由罗纳德·科斯(Ronald Coase)提出的一种观点,认为在某些条件下,经济的外部性或曰非效率可以通过当事人的谈判而得到纠正,从而达到社会效益最大化。
1067 0
泰勒的《科学管理原理》—《可以量化的管理学》
6.6.1数量n与泰勒的《科学管理原理》 内容提要:泰勒的科学管理原理的四要素为:形成一门真正的科学,科学的选择工人,对工人进行教育和培训,管理者与工人之间亲密友好的合作。
1144 0
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
570 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
645 0
|
资源调度
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
751 0
|
资源调度 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
795 0
|
资源调度
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfra...
878 0