A fine property of the non-empty countable dense-in-self set in the real line

简介: A fine property of the non-empty countable dense-in-self set in the real line   Zujin Zhang   School of Mathematics and Computer Science, Gannan Normal University Ganzhou 341000, P.

A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

 

School of Mathematics and Computer Science,

Gannan Normal University

Ganzhou 341000, P.R. China

 

zhangzujin361@163.com

 

MSC2010: 26A03.

 

Keywords: Dense-in-self set; countable set.

 

Abstract:

Let E\bbR1 be non-empty, countable, dense-in-self, then we shall show that ˉE\bsE is dense in ˉE.

 

1. Introduction and the main result

 

 As is well-known, \bbQ\bbR1 is countable, dense-in-self (that is, \bbQ\bbQ=\bbR1); and \bbR1\bs\bbQ is dense in \bbR1.

 

 We generalize this fact as

Theorem 1. Let E\bbR1 be non-empty, countable, dense-in-self, then ˉE\bsE is dense in ˉE.

 

Before proving Theorem 1, let us recall several related definitions and facts.

 

Definition 2. A set E is closed iff EE. A set E is dense-in-self iff EE; that is, E has no isolated points. A set E is complete iff E=E.

 

A well-known complete set is the Cantor set. Moreover, we have

 

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set E has power c; that is, there is a bijection between E and \bbR1.

 

Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set E has the form

 \bexE=\sexn1(an,bn)c,\eex

where (ai,bi), (aj,bj) (ij) have no common points.

 

2. Proof of Theorem 1。

Since E is dense-in-self, we have EE, ˉE=E. Also, by the fact that E=E, we see E is complete, and has power c. Note that E is countable, we deduce E\bsE\vno.

 

Now that E is complete, we see by Lemma 4,

\bexEc=n1(an,bn).\eex

For  xE,  δ>0, we have

 \bee[xδ,x+δ]E=\sex[xδ,x+δ](E\bsE)\sex[xδ,x+δ]E.\eee

By analyzing the complement of [xδ,x+δ](E\bsE), we see [xδ,x+δ]E (minus \sedxδ if xδ equals some an, and minus \sedx+δ if x+δ equals some bn) is compelete, thus has power c. Due to the fact that E is countable, we deduce from (???) that

 \bex[xδ,x+δ](E\bsE)\vno.\eex

This completes the proof of Theorem 1.

 

目录
打赏
0
0
0
0
15
分享
相关文章
Warning: Can save best model only with val_acc available, skipping
本文解决了在使用DenseNet网络结构保存最优模型时出现的"Warning: Can save best model only with val_acc available, skipping"问题,方法是将`ModelCheckpoint`回调函数中的`monitor`参数值从`val_acc`改为`val_accuracy`。
RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,
RuntimeError: Given groups=1, weight of size 64 128 1 7, expected input[16,
3041 0
【CatBoost报错解决】CatBoostError: Bad value for num feature[non default doc idx=0,feature idx=19]=
【CatBoost报错解决】CatBoostError: Bad value for num feature[non default doc idx=0,feature idx=19]=
InvalidJobConfException: Output directory not set
InvalidJobConfException: Output directory not set
79 0
YOLO V5出现RuntimeError: result type Float can‘t be cast to the desired output type long int解决方法
YOLO V5出现RuntimeError: result type Float can‘t be cast to the desired output type long int解决方法
807 0
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
YOLOv7在5 FPS到160 FPS的范围内,在速度和精度方面都超过了所有已知的物体检测器,在GPU V100上以30 FPS或更高的速度在所有已知的实时物体检测器中具有最高的精度56.8% AP。
503 0
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
302 0
解决TypeError: tf__update_state() got an unexpected keyword argument ‘sample_weight‘
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
595 0
ValueError: With n_samples=0, test_size=0.15 and train_size=None, the resulting train set will be em
成功解决ValueError: With n_samples=0, test_size=0.3 and train_size=None, the resulting train set will be
成功解决ValueError: With n_samples=0, test_size=0.3 and train_size=None, the resulting train set will be
成功解决ValueError: With n_samples=0, test_size=0.3 and train_size=None, the resulting train set will be
成功解决lightgbm.basic.LightGBMError: Parameter max_depth should be of type int, got “0.02“
成功解决lightgbm.basic.LightGBMError: Parameter max_depth should be of type int, got “0.02“
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等