[Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001]

简介: $$\bex \bbu\in L^{p,r}(0,T;L^{q,\infty}(\bbR^3)),\quad\frac{2}{p}+\frac{3}{q}=1,\quad 3

$$\bex \bbu\in L^{p,r}(0,T;L^{q,\infty}(\bbR^3)),\quad\frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\infty,\quad 2<p<r<\infty, \eex$$ or $$\bex \sen{\bbu}_{L^{p,\infty}(0,T;L^{q,\infty}(\bbR^3))}\leq \ve,\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\infty,\quad 2<p<\infty, \eex$$

目录
相关文章
|
机器学习/深度学习 算法框架/工具 TensorFlow
(转) AdversarialNetsPapers
  本文转自:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers about adversarial nets The First pap...
|
机器学习/深度学习 网络安全 Python
Detecting Kippo SSH honeypots, bypassing patches, and all that jazz.
http://morris.guru/detecting-kippo-ssh-honeypots/ Background I have a lot of honeypots configured around the Internet.
1340 0
[Papers]NSE, $u$, Lorentz space [Bjorland-Vasseur, JMFM, 2011]
$$\bex \int_0^T\frac{\sen{\bbu}_{L^{q,\infty}}^p}{\ve+\ln \sex{e+\sen{\bbu}_{L^\infty}}}\rd s
655 0
[Papers]NSE, $u$, Lorentz space [Bosia-Pata-Robinson, JMFM, 2014]
$$\bex \bbu\in L^p(0,T;L^{q,\infty}),\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3
799 0
|
Python
[Papers]NSE, $\pi$, Lorentz space [Suzuki, JMFM, 2012]
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad \frac{5}{2}\leq q\leq 3.
661 0
[Papers]NSE, $\p_3u$, multiplier spaces [Guo-Gala, ANAP, 2013]
$$\bex \p_3\bbu\in L^\frac{2}{1-r}(0,T;\dot X_r(\bbR^3)),\quad 0\leq r\leq 1. \eex$$
703 0
[Papers]NSE, $\p_3u$, Lebesgue space [Penel-Pokorny, AM, 2004]
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \infty. \eex$$
687 0
[Papers]NSE, $\n u_3$, Lebesgue space, [Pokorny, EJDE, 2003; Zhou, MAA, 2002]
$$\bex \n u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \infty. \eex$$
717 0