[家里蹲大学数学杂志]第433期一个极限

简介: 求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$    解答: 还记得对数不等式么: $$\bex \dfrac{x}{1+x}

求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$ 

 

解答: 还记得对数不等式么: $$\bex \dfrac{x}{1+x}<\ln(1+x)<x,\quad x>0. \eex$$ 我们有 $$\beex \bea \ln\dfrac{n^2+i}{n^2-i}&=\ln\sex{1+\dfrac{2i}{n^2-i}} <\dfrac{2i}{n^2-i}\leq \dfrac{2i}{n^2-n},\\ \ln\dfrac{n^2+i}{n^2-i}&>\dfrac{\dfrac{2i}{n^2-i}}{1+\dfrac{2i}{n^2-i}} =\dfrac{2i}{n^2+i}\geq \dfrac{2i}{n^2+n}. \eea \eeex$$ 相加而有 $$\bex 1< \ln \prod_{k=1}^n \dfrac{n^2+i}{n^2-i}<\dfrac{n^2+n}{n^2-n}. \eex$$ 令 $n\to\infty$ 即得原极限 $=e$. 

目录
相关文章
[家里蹲大学数学杂志]第426期一个无理数的证明
试证: $\dps{\cos\frac{2\pi}{5}}$ 为无理数.   证明: 设 $$\bex z=e^{i\frac{2\pi}{5}}, \eex$$ 则 $$\beex \bea z^5&=e^{i2\pi}=1,\\ (z-1)(z^4+z^3+z^2+z+1)&=0,\\ z^4+z^3+z^2+z+1&=0,\\ z^2+z+1+z^{-1}+z^{-2}&=0.
605 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
786 0
[家里蹲大学数学杂志]第412期积分与极限
(云南大学). 已知 $$\bex 0\leq f\in C[0,\infty),\quad \int_0^\infty \frac{1}{f^2(x)}\rd x0,\ \exists\ X>0,\st A\geq 2X\ra \int_X^A\frac{1}{f^2(x)}\rd x0,\ \e...
830 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
825 0
|
移动开发
[家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零
设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}
765 0
[家里蹲大学数学杂志]第248期东北师范大学2013年数学分析考研试题
1 计算 $$\bex \lim_{x\to \infty} \sex{\frac{4x+3}{4x-1}}^{2x-1}. \eex$$ 2计算 $$\bex \lim_{x\to \infty}\frac{1}{n}\sum_{i=1}^n \ln \frac{i\pi}{n}.
871 0
|
Perl
[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$.
668 0
|
Perl
[家里蹲大学数学杂志]第056期Tikhonov 泛函的变分
设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov 泛函 $$\bee\label{T} J_\alpha(x)=\sen{Tx-y_0}^2+\alpha...
834 0
[家里蹲大学数学杂志]第294期微分方程与数学物理问题习题集
第294期_微分方程与数学物理问题习题集   摘要: 本文给出了作者于 2011 年 10 月 10 日至 2011 年 10 月 31 日 看 Nail H. Ibragimov 的 时留下的习题全部解答.
1064 0
[家里蹲大学数学杂志]第048期普林斯顿高等研究所的疯子们
文心孤竹发帖, 张祖锦整理如下   1 头号大疯子---Albert Einstein(爱因斯坦)   最近在构思写一写普林斯顿高等研究所的疯子们. 本来想先谈谈第一任院长, 可以没找到照片, 所以转而谈里面最大的疯子:爱因斯坦!   大家看看这表情 (下图)够不够头号大疯子的称号.
1800 0