[家里蹲大学数学杂志]第412期积分与极限

简介: (云南大学). 已知 $$\bex 0\leq f\in C[0,\infty),\quad \int_0^\infty \frac{1}{f^2(x)}\rd x0,\ \exists\ X>0,\st A\geq 2X\ra \int_X^A\frac{1}{f^2(x)}\rd x0,\ \e...

(云南大学). 已知 $$\bex 0\leq f\in C[0,\infty),\quad \int_0^\infty \frac{1}{f^2(x)}\rd x<\infty. \eex$$ 试证: $$\bex \vlm{A}\frac{1}{A^2}\int_0^A f^2(x)\rd x=\infty. \eex$$

证明: 由 Cauchy 收敛准则, $$\bex \forall\ M>0,\ \exists\ X>0,\st A\geq 2X\ra \int_X^A\frac{1}{f^2(x)}\rd x<\frac{1}{4M}. \eex$$ 又由 Cauchy-Schwarz 不等式, $$\beex \bea (A-X)^2&=\sex{\int_X^A f(x)\cdot \frac{1}{f(x)}\rd x}^2\\ &\leq \int_X^A f^2(x)\rd x\cdot \int_X^A\frac{1}{f^2(x)}\rd x\\ &<\frac{1}{4M} \int_X^A f^2(x)\rd x. \eea \eeex$$ 于是 $$\bex \frac{1}{A^2}\int_X^A f^2(x)\rd x>4M\frac{(A-X)^2}{A^2}\geq M. \eex$$ 综上, $$\bex \forall\ M>0,\ \exists\ X,\st A\geq 2X\ra \frac{1}{A^2}\int_0^Af^2(x)\rd x \geq \frac{1}{A^2}\int_X^A f^2(x)\rd x\geq M. \eex$$ 故有结论. 

目录
相关文章
[家里蹲大学数学杂志]第442期一个积分不等式
设 $f$ 在 $[a,b]$ 上连续可微且 $f(a)=0$. 试证: $$\bex \int_a^b |f'(x)|^2\rd x\geq \frac{2}{(b-a)^2}\int_a^b |f(x)|^2\rd x.
670 0
[家里蹲大学数学杂志]第433期一个极限
求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$    解答: 还记得对数不等式么: $$\bex \dfrac{x}{1+x}
1001 0
[家里蹲大学数学杂志]第426期一个无理数的证明
试证: $\dps{\cos\frac{2\pi}{5}}$ 为无理数.   证明: 设 $$\bex z=e^{i\frac{2\pi}{5}}, \eex$$ 则 $$\beex \bea z^5&=e^{i2\pi}=1,\\ (z-1)(z^4+z^3+z^2+z+1)&=0,\\ z^4+z^3+z^2+z+1&=0,\\ z^2+z+1+z^{-1}+z^{-2}&=0.
601 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
783 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
812 0
|
Web App开发
[家里蹲大学数学杂志]第394期分组求积分因子法
在第 2.3 节中, 我们已经知道, 对 $$\bee\label{ode} M(x,y)\rd x+N(x,y)\rd y=0 \eee$$而言,   1. 若 $M_y=N_x$, 则 \eqref{ode} 为恰当 ode, 而可通过求解 pde 组 $$\bex u_x=M,\quad u_y=N \eex$$ 求出 $u$, 而 \eqref{ode} 的通解为 $u=C$.
904 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1023 0
|
关系型数据库 Perl RDS
[家里蹲大学数学杂志]第322期赣南师范学院数学竞赛培训第11套模拟试卷
  数学分析部分     1. 已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.
680 0
[家里蹲大学数学杂志]第244期多项式互素与空间直和
设 $f(x),g(x)$ 为数域 $\bbF$ 上的多项式, 且有 $(f(x),g(x))=1$, $A$ 是 $\bbF$ 上的一方阵. 再设 $f(A)g(A)x=0$, $f(A)x=0$, $g(A)x=0$ 的解空间分别为 $W$, $V_1$ 和 $V_2$.
735 0
|
Perl
[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$.
661 0