ApsaraDB for Redis之内存去哪儿了(一)数据过期与逐出策略

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: ## 背景 Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制。 用户在使用阿里云Redis时,除了对性能,稳定性有很高的要求外,对内存占用也比较敏感。在使用过程中,有些用户会觉得自己的线上实例内存占用比自己预想的要大。 事实上,实例中的内存除了保存原始的键值对所需的开销外,还有一些运行时产生的额外内存,包括: 1. 垃圾数据和过期Key所占空间 1

背景

Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制。

用户在使用阿里云Redis时,除了对性能,稳定性有很高的要求外,对内存占用也比较敏感。在使用过程中,有些用户会觉得自己的线上实例内存占用比自己预想的要大。

事实上,实例中的内存除了保存原始的键值对所需的开销外,还有一些运行时产生的额外内存,包括:

  1. 垃圾数据和过期Key所占空间
  2. 字典渐进式Rehash导致未及时删除的空间
  3. Redis管理数据,包括底层数据结构开销,客户端信息,读写缓冲区等
  4. 主从复制,bgsave时的额外开销
  5. 其它

本系列文章主要分析这些在Redis中产生的原因,带来的影响和规避的方式。

本文主要分析第一项Redis过期策略对内存的影响。

Redis过期数据清理策略

过期数据清理时机

为了防止一次性清理大量过期Key导致Redis服务受影响,Redis只在空闲时清理过期Key。

具体Redis逐出过期Key的时机为:

  1. 访问Key时,会判断Key是否过期,逐出过期Key;

    robj lookupKeyRead(redisDb db, robj *key) {

    robj *val;
    expireIfNeeded(db,key);
    val = lookupKey(db,key);
    ...
    return val;

    }

  2. CPU空闲时在定期serverCron任务中,逐出部分过期Key;

    aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL)

    int serverCron(struct aeEventLoop eventLoop, long long id, void clientData) {

    ...
    databasesCron();
    ...

    }

    void databasesCron(void) {

    /* Expire keys by random sampling. Not required for slaves
     + as master will synthesize DELs for us. */
    if (server.active_expire_enabled && server.masterhost == NULL)
        activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
    ...

    }

  3. 每次事件循环执行的时候,逐出部分过期Key;

    void aeMain(aeEventLoop *eventLoop) {

    eventLoop->stop = 0;
    while (!eventLoop->stop) {
        if (eventLoop->beforesleep != NULL)
            eventLoop->beforesleep(eventLoop);
        aeProcessEvents(eventLoop, AE_ALL_EVENTS);
    }

    }

    void beforeSleep(struct aeEventLoop *eventLoop) {

    ...
    /* Run a fast expire cycle (the called function will return
     - ASAP if a fast cycle is not needed). */
    if (server.active_expire_enabled && server.masterhost == NULL)
        activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST);
    ...

    }

过期数据清理算法

Redis过期Key清理的机制对清理的频率和最大时间都有限制,在尽量不影响正常服务的情况下,进行过期Key的清理,以达到长时间服务的性能最优.

Redis会周期性的随机测试一批设置了过期时间的key并进行处理。测试到的已过期的key将被删除。具体的算法如下:

  1. Redis配置项hz定义了serverCron任务的执行周期,默认为10,即CPU空闲时每秒执行10次;
  2. 每次过期key清理的时间不超过CPU时间的25%,即若hz=1,则一次清理时间最大为250ms,若hz=10,则一次清理时间最大为25ms;
  3. 清理时依次遍历所有的db;
  4. 从db中随机取20个key,判断是否过期,若过期,则逐出;
  5. 若有5个以上key过期,则重复步骤4,否则遍历下一个db;
  6. 在清理过程中,若达到了25%CPU时间,退出清理过程;

这是一个基于概率的简单算法,基本的假设是抽出的样本能够代表整个key空间,redis持续清理过期的数据直至将要过期的key的百分比降到了25%以下。这也意味着在长期来看任何给定的时刻已经过期但仍占据着内存空间的key的量最多为每秒的写操作量除以4.

  • 由于算法采用的随机取key判断是否过期的方式,故几乎不可能清理完所有的过期Key;
  • 调高hz参数可以提升清理的频率,过期key可以更及时的被删除,但hz太高会增加CPU时间的消耗;Redis作者关于hz参数的一些讨论

代码分析如下:

void activeExpireCycle(int type) {
    ...
    /* We can use at max ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC percentage of CPU time
     * per iteration. Since this function gets called with a frequency of
     * server.hz times per second, the following is the max amount of
     * microseconds we can spend in this function. */
    // 最多允许25%的CPU时间用于过期Key清理
    // 若hz=1,则一次activeExpireCycle最多只能执行250ms
    // 若hz=10,则一次activeExpireCycle最多只能执行25ms
    timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
    ...
    // 遍历所有db
    for (j = 0; j < dbs_per_call; j++) {
        int expired;
        redisDb *db = server.db+(current_db % server.dbnum);

        /* Increment the DB now so we are sure if we run out of time
         * in the current DB we'll restart from the next. This allows to
         * distribute the time evenly across DBs. */
        current_db++;

        /* Continue to expire if at the end of the cycle more than 25%
         * of the keys were expired. */
        do {
            ...
            // 一次取20个Key,判断是否过期
            if (num > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP)
                num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP;

            while (num--) {
                dictEntry *de;
                long long ttl;

                if ((de = dictGetRandomKey(db->expires)) == NULL) break;
                ttl = dictGetSignedIntegerVal(de)-now;
                if (activeExpireCycleTryExpire(db,de,now)) expired++;
            }

            if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
                long long elapsed = ustime()-start;
                latencyAddSampleIfNeeded("expire-cycle",elapsed/1000);
                if (elapsed > timelimit) timelimit_exit = 1;
            }
            if (timelimit_exit) return;
            /* We don't repeat the cycle if there are less than 25% of keys
             * found expired in the current DB. */
            // 若有5个以上过期Key,则继续直至时间超过25%的CPU时间
            // 若没有5个过期Key,则跳过。
        } while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4);
    }
}

Redis数据逐出策略

数据逐出时机

// 执行命令
int processCommand(redisClient *c) {
        ...
        /* Handle the maxmemory directive.
        **
        First we try to free some memory if possible (if there are volatile
        * keys in the dataset). If there are not the only thing we can do
        * is returning an error. */
        if (server.maxmemory) {
            int retval = freeMemoryIfNeeded();
            ...
    }
    ...
}

数据逐出算法

在逐出算法中,根据用户设置的逐出策略,选出待逐出的key,直到当前内存小于最大内存值为主.

可选逐出策略如下:

  • volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用 的数据淘汰
  • volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数 据淘汰
  • volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据 淘汰
  • allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
  • allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  • no-enviction(驱逐):禁止驱逐数据

具体代码如下

int freeMemoryIfNeeded() {
    ...
    // 计算mem_used
    mem_used = zmalloc_used_memory();
    ...

    /* Check if we are over the memory limit. */
    if (mem_used <= server.maxmemory) return REDIS_OK;

    // 如果禁止逐出,返回错误
    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
        return REDIS_ERR; /* We need to free memory, but policy forbids. */

    mem_freed = 0;
    mem_tofree = mem_used - server.maxmemory;
    long long start = ustime();
    latencyStartMonitor(latency);
    while (mem_freed < mem_tofree) {
        int j, k, keys_freed = 0;

        for (j = 0; j < server.dbnum; j++) {
            // 根据逐出策略的不同,选出待逐出的数据
            long bestval = 0; /* just to prevent warning */
            sds bestkey = NULL;
            struct dictEntry *de;
            redisDb *db = server.db+j;
            dict *dict;

            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
            {
                dict = server.db[j].dict;
            } else {
                dict = server.db[j].expires;
            }
            if (dictSize(dict) == 0) continue;

            /* volatile-random and allkeys-random policy */
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
            {
                de = dictGetRandomKey(dict);
                bestkey = dictGetKey(de);
            }

            /* volatile-lru and allkeys-lru policy */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
            {
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    robj *o;

                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    /* When policy is volatile-lru we need an additional lookup
                     * to locate the real key, as dict is set to db->expires. */
                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                        de = dictFind(db->dict, thiskey);
                    o = dictGetVal(de);
                    thisval = estimateObjectIdleTime(o);

                    /* Higher idle time is better candidate for deletion */
                    if (bestkey == NULL || thisval > bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }

            /* volatile-ttl */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;

                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    thisval = (long) dictGetVal(de);

                    /* Expire sooner (minor expire unix timestamp) is better
                     * candidate for deletion */
                    if (bestkey == NULL || thisval < bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }

            /* Finally remove the selected key. */
            // 逐出挑选出的数据
            if (bestkey) {
                ...
                delta = (long long) zmalloc_used_memory();
                dbDelete(db,keyobj);
                delta -= (long long) zmalloc_used_memory();
                mem_freed += delta;
                ...
            }
        }
        ...
    }
    ...
    return REDIS_OK;
}

相关最佳实践

  • 不要放垃圾数据,及时清理无用数据

实验性的数据和下线的业务数据及时删除;

  • key尽量都设置过期时间

对具有时效性的key设置过期时间,通过redis自身的过期key清理策略来降低过期key对于内存的占用,同时也能够减少业务的麻烦,不需要定期手动清理了.

  • 单Key不要过大

给用户排查问题时遇到过单个string的value有43M的,也有一个list 100多万个大成员占了1G多内存的。这种key在get的时候网络传输延迟会比较大,需要分配的输出缓冲区也比较大,在定期清理的时候也容易造成比较高的延迟. 最好能通过业务拆分,数据压缩等方式避免这种过大的key的产生。

  • 不同业务如果公用一个业务的话,最好使用不同的逻辑db分开

从上面的分析可以看出,Redis的过期Key清理策略和强制淘汰策略都会遍历各个db。将key分布在不同的db有助于过期Key的及时清理。另外不同业务使用不同db也有助于问题排查和无用数据的及时下线.

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
2月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
26天前
|
算法 Java
堆内存分配策略解密
本文深入探讨了Java虚拟机中堆内存的分配策略,包括新生代(Eden区和Survivor区)与老年代的分配机制。新生代对象优先分配在Eden区,当空间不足时执行Minor GC并将存活对象移至Survivor区;老年代则用于存放长期存活或大对象,避免频繁内存拷贝。通过动态对象年龄判定优化晋升策略,并介绍Full GC触发条件。理解这些策略有助于提高程序性能和稳定性。
|
1月前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
49 5
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
151 7
|
2月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
83 11
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
79 1
|
2月前
|
存储 分布式计算 算法
1GB内存挑战:高效处理40亿QQ号的策略
在面对如何处理40亿个QQ号仅用1GB内存的难题时,我们需要采用一些高效的数据结构和算法来优化内存使用。这个问题涉及到数据存储、查询和处理等多个方面,本文将分享一些实用的技术策略,帮助你在有限的内存资源下处理大规模数据集。
39 1
|
2月前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践
|
3月前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
105 14
|
3月前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
176 1