Lucene.Net 2.3.1开发介绍 —— 二、分词(二)

简介: 原文:Lucene.Net 2.3.1开发介绍 —— 二、分词(二) 1.2、分词的过程   1.2.1、分词器工作的过程 内置的分词器效果都不好,那怎么办?只能自己写了!在写之前当然是要先看看内置的分词器是怎么实现的了。
原文: Lucene.Net 2.3.1开发介绍 —— 二、分词(二)

1.2、分词的过程

 

1.2.1、分词器工作的过程

内置的分词器效果都不好,那怎么办?只能自己写了!在写之前当然是要先看看内置的分词器是怎么实现的了。从1.1分析分词效果,可以看出KeywordAnalyzer这个分词器最懒惰,基本什么事情也没做。并不是它不会做,而是我们没找到使用它的方法,就像手上拿着个盒子,不知道里面是什么,就不知道这个是干嘛的,有什么用。打开盒子,那就是要查看源代码了!

 

 

代码 1.2.1.1

 

Code
 1using System;
 2
 3namespace Lucene.Net.Analysis
 4{
 5    
 6    /**//// <summary> "Tokenizes" the entire stream as a single token. This is useful
 7    /// for data like zip codes, ids, and some product names.
 8    /// </summary>

 9    public class KeywordAnalyzer : Analyzer
10    {
11        public override TokenStream TokenStream(System.String fieldName, System.IO.TextReader reader)
12        {
13            return new KeywordTokenizer(reader);
14        }

15
16        public override TokenStream ReusableTokenStream(System.String fieldName, System.IO.TextReader reader)
17        {
18            Tokenizer tokenizer = (Tokenizer)GetPreviousTokenStream();
19            if (tokenizer == null)
20            {
21                tokenizer = new KeywordTokenizer(reader);
22                SetPreviousTokenStream(tokenizer);
23            }

24            else
25                tokenizer.Reset(reader);
26            return tokenizer;
27        }

28    }

29}

 

代码1.2.1.1 就是传说中的源码了。先看看注释,意思大体是“‘Tokenizes’整体的流变成一个个词。这个特别适用于邮编,ID,和商品名称。”Tokenizes应该是拆分的意思,字典上查不到这个词。

这段代码比较简单,只有两个方法,而第二个方法就是我们先前分析结果的时候用的(见段落1.1)。关键点就在于调用了KeywordTokenizer类。切到KeywordTokenizer类查看一下。

 

 

代码1.2.1.2

 

Code
 1using System;
 2
 3namespace Lucene.Net.Analysis
 4{
 5    
 6    /**//// <summary> Emits the entire input as a single token.</summary>
 7    public class KeywordTokenizer : Tokenizer
 8    {
 9        
10        private const int DEFAULT_BUFFER_SIZE = 256;
11        
12        private bool done;
13        
14        public KeywordTokenizer(System.IO.TextReader input) : this(input, DEFAULT_BUFFER_SIZE)
15        {
16        }

17        
18        public KeywordTokenizer(System.IO.TextReader input, int bufferSize) : base(input)
19        {
20            this.done = false;
21        }

22
23        public override Token Next(Token result)
24        {
25            if (!done)
26            {
27                done = true;
28                int upto = 0;
29                result.Clear();
30                char[] buffer = result.TermBuffer();
31                while (true)
32                {
33                    int length = input.Read(buffer, upto, buffer.Length - upto);
34                    if (length <= 0)
35                        break;
36                    upto += length;
37                    if (upto == buffer.Length)
38                        buffer = result.ResizeTermBuffer(1 + buffer.Length);
39                }

40                result.termLength = upto;
41                return result;
42            }

43            return null;
44        }

45
46        public override void Reset(System.IO.TextReader input)
47        {
48            base.Reset(input);
49            this.done = false;
50        }

51    }

52}

 

代码 1.2.1.2 就是KeywordTokenizer的源码。代码量很小,却没有完成全部工作,而是将部分工作交给了父类。关注Lucene的人都可以知道,新版本中,分词这里换掉了,现在多了一个重载的Next方法。这里不讨论为什么要加这个重载,这篇文章主要是讲应用的。因为取词是用Next方法走的,那么只需要关注Next方法就可以了。KeywordTokenizer的父类是Tokenizer,但是在Tokenizer里找不到我们想要的关系,但是Tokenizer又继承自TokenStream。查看TokenStream类。

 

 

代码 1.2.1.3

 

Code
 1
 2using System;
 3
 4using Payload = Lucene.Net.Index.Payload;
 5
 6namespace Lucene.Net.Analysis
 7{
 8    
 9    /**//// <summary>A TokenStream enumerates the sequence of tokens, either from
10    /// fields of a document or from query text.
11    /// <p>
12    /// This is an abstract class.  Concrete subclasses are:
13    /// <ul>
14    /// <li>{@link Tokenizer}, a TokenStream
15    /// whose input is a Reader; and
16    /// <li>{@link TokenFilter}, a TokenStream
17    /// whose input is another TokenStream.
18    /// </ul>
19    /// NOTE: subclasses must override at least one of {@link
20    /// #Next()} or {@link #Next(Token)}.
21    /// </summary>

22    
23    public abstract class TokenStream
24    {
25        
26        /**//// <summary>Returns the next token in the stream, or null at EOS.
27        /// The returned Token is a "full private copy" (not
28        /// re-used across calls to next()) but will be slower
29        /// than calling {@link #Next(Token)} instead.. 
30        /// </summary>

31        public virtual Token Next()
32        {
33            Token result = Next(new Token());
34            
35            if (result != null)
36            {
37                Payload p = result.GetPayload();
38                if (p != null)
39                {
40                    result.SetPayload((Payload) p.Clone());
41                }

42            }

43            
44            return result;
45        }

46        
47        /**//// <summary>Returns the next token in the stream, or null at EOS.
48        /// When possible, the input Token should be used as the
49        /// returned Token (this gives fastest tokenization
50        /// performance), but this is not required and a new Token
51        /// may be returned. Callers may re-use a single Token
52        /// instance for successive calls to this method.
53        /// <p>
54        /// This implicitly defines a "contract" between 
55        /// consumers (callers of this method) and 
56        /// producers (implementations of this method 
57        /// that are the source for tokens):
58        /// <ul>
59        /// <li>A consumer must fully consume the previously 
60        /// returned Token before calling this method again.</li>
61        /// <li>A producer must call {@link Token#Clear()}
62        /// before setting the fields in it & returning it</li>
63        /// </ul>
64        /// Note that a {@link TokenFilter} is considered a consumer.
65        /// </summary>
66        /// <param name="result">a Token that may or may not be used to return
67        /// </param>
68        /// <returns> next token in the stream or null if end-of-stream was hit
69        /// </returns>

70        public virtual Token Next(Token result)
71        {
72            return Next();
73        }

74        
75        /**//// <summary>Resets this stream to the beginning. This is an
76        /// optional operation, so subclasses may or may not
77        /// implement this method. Reset() is not needed for
78        /// the standard indexing process. However, if the Tokens 
79        /// of a TokenStream are intended to be consumed more than 
80        /// once, it is necessary to implement reset(). 
81        /// </summary>

82        public virtual void  Reset()
83        {
84        }

85        
86        /**//// <summary>Releases resources associated with this stream. </summary>
87        public virtual void  Close()
88        {
89        }

90    }

91}

 

代码 1.2.1.3 就是TokenStream类的源码。Next(Token)方法和Next()是相互调用的关系。但是因为Next(Token)方法在KeywordTokenizer里被重写掉了,因此,这里就可以忽略TokenStream的Next(Token)方法了。

 

从上面代码可以看出,调用Next()方法,实际上是传递给Next(Token)方法一个新Token实例。即使直接调用Next(Token),传递一个带有数据的Token,也会先被清除。在循环中,会把构造函数传入的流缓冲进Token类的缓冲区。ResizeTermBuffer方法是自动扩容用的,就像.Net Framework里的一些类能够自然扩容一样。比如List<T>,Hashtable或StringBuilder等。这个过程看不到分词的过程。不过这样就大致明白了分词器工作的流程。

 

1.2.2 如何让分词器分词

 

知道分词器如何工作了,但是现在还不明白分词如何分词。再回到1.1.2节,看到WhitespaceAnalyzer分词器似乎是学习的好选择。因为这个分词器只有遇到空格才会进行分词操作。

 

根据1.2.1的经验,直接查看WhitespaceTokenizer类。

 

 

代码1.2.2.1

 

Code
 1using System;
 2
 3namespace Lucene.Net.Analysis
 4{
 5    
 6    /**//// <summary>A WhitespaceTokenizer is a tokenizer that divides text at whitespace.
 7    /// Adjacent sequences of non-Whitespace characters form tokens. 
 8    /// </summary>

 9    
10    public class WhitespaceTokenizer : CharTokenizer
11    {
12        /**//// <summary>Construct a new WhitespaceTokenizer. </summary>
13        public WhitespaceTokenizer(System.IO.TextReader in_Renamed) : base(in_Renamed)
14        {
15        }

16        
17        /**//// <summary>Collects only characters which do not satisfy
18        /// {@link Character#isWhitespace(char)}.
19        /// </summary>

20        protected internal override bool IsTokenChar(char c)
21        {
22            return !System.Char.IsWhiteSpace(c);
23        }

24    }

25}

 

很好,这段代码很短,可是没有看到我们想要的东西。继续看父类。

 

 

代码1.2.2.2

 

Code
 1using System;
 2
 3namespace Lucene.Net.Analysis
 4{
 5    
 6    /**//// <summary>An abstract base class for simple, character-oriented tokenizers.</summary>
 7    public abstract class CharTokenizer : Tokenizer
 8    {
 9        public CharTokenizer(System.IO.TextReader input) : base(input)
10        {
11        }

12        
13        private int offset = 0, bufferIndex = 0, dataLen = 0;
14        private const int MAX_WORD_LEN = 255;
15        private const int IO_BUFFER_SIZE = 1024;
16        private char[] ioBuffer = new char[IO_BUFFER_SIZE];
17        
18        /**//// <summary>Returns true iff a character should be included in a token.  This
19        /// tokenizer generates as tokens adjacent sequences of characters which
20        /// satisfy this predicate.  Characters for which this is false are used to
21        /// define token boundaries and are not included in tokens. 
22        /// </summary>

23        protected internal abstract bool IsTokenChar(char c);
24        
25        /**//// <summary>Called on each token character to normalize it before it is added to the
26        /// token.  The default implementation does nothing.  Subclasses may use this
27        /// to, e.g., lowercase tokens. 
28        /// </summary>

29        protected internal virtual char Normalize(char c)
30        {
31            return c;
32        }

33
34        public override Token Next(Token token)
35        {
36            token.Clear();
37            int length = 0;
38            int start = bufferIndex;
39            char[] buffer = token.TermBuffer();
40            while (true)
41            {
42
43                if (bufferIndex >= dataLen)
44                {
45                    offset += dataLen;
46                    dataLen = input is Lucene.Net.Index.DocumentsWriter.ReusableStringReader ? ((Lucene.Net.Index.DocumentsWriter.ReusableStringReader) input).Read(ioBuffer) : input.Read((System.Char[]) ioBuffer, 0, ioBuffer.Length);
47                    if (dataLen <= 0)
48                    {
49                        if (length > 0)
50                            break;
51                        else
52                            return null;
53                    }

54                    bufferIndex = 0;
55                }

56
57                char c = ioBuffer[bufferIndex++];
58
59                if (IsTokenChar(c))
60                {
61                    // if it's a token char
62
63                    if (length == 0)
64                        // start of token
65                        start = offset + bufferIndex - 1;
66                    else if (length == buffer.Length)
67                        buffer = token.ResizeTermBuffer(1 + length);
68
69                    buffer[length++= Normalize(c); // buffer it, normalized
70
71                    if (length == MAX_WORD_LEN)
72                        // buffer overflow!
73                        break;
74                }

75                else if (length > 0)
76                    // at non-Letter w/ chars
77                    break// return 'em
78            }

79
80            token.termLength = length;
81            token.startOffset = start;
82            token.endOffset = start + length;
83            return token;
84        }

85
86        public override void Reset(System.IO.TextReader input)
87        {
88            base.Reset(input);
89            bufferIndex = 0;
90            offset = 0;
91            dataLen = 0;
92        }

93    }

94}

 

 

天公不作美,刚看到简单的,就来了个长的。无奈中。不过为什么要多一重继承呢?那就是有其他分词器也用到CharTokenizer了。而WhitespaceTokenizer中没有重写Next方法,而只是重写了IsTokenChar方法,几乎可以肯定。这个IsTokenChar才是重点。IsTokenChar故名思意,一看注释,果然!这个方法是判断是否遇到了分词的点的。这个其实和string类的Split方法相似。注意到Next方法关于IsTokenChar逻辑那一段,恩,果然是这样分词的。实际上就是拆分字符串嘛。

目录
相关文章
|
22天前
|
Linux API C#
基于 .NET 开发的多功能流媒体管理控制平台
基于 .NET 开发的多功能流媒体管理控制平台
38 9
|
24天前
|
缓存 算法 安全
精选10款C#/.NET开发必备类库(含使用教程),工作效率提升利器!
精选10款C#/.NET开发必备类库(含使用教程),工作效率提升利器!
62 12
|
22天前
|
Web App开发 前端开发 调度
一款基于 .NET + Blazor 开发的智能访客管理系统
一款基于 .NET + Blazor 开发的智能访客管理系统
|
22天前
|
前端开发 JavaScript C#
基于.NET8+Vue3开发的权限管理&个人博客系统
基于.NET8+Vue3开发的权限管理&个人博客系统
|
22天前
|
网络协议 C#
基于.NET WinForm开发的一款硬件及协议通讯工具
基于.NET WinForm开发的一款硬件及协议通讯工具
|
22天前
|
监控 前端开发 API
一款基于 .NET MVC 框架开发、功能全面的MES系统
一款基于 .NET MVC 框架开发、功能全面的MES系统
|
2月前
|
传感器 人工智能 供应链
.NET开发技术在数字化时代的创新作用,从高效的开发环境、强大的性能表现、丰富的库和框架资源等方面揭示了其关键优势。
本文深入探讨了.NET开发技术在数字化时代的创新作用,从高效的开发环境、强大的性能表现、丰富的库和框架资源等方面揭示了其关键优势。通过企业级应用、Web应用及移动应用的创新案例,展示了.NET在各领域的广泛应用和巨大潜力。展望未来,.NET将与新兴技术深度融合,拓展跨平台开发,推动云原生应用发展,持续创新。
51 4
|
2月前
|
机器学习/深度学习 人工智能 物联网
.NET 技术:引领未来开发潮流
.NET 技术以其跨平台兼容性、高效的开发体验、强大的性能表现和安全可靠的架构,成为引领未来开发潮流的重要力量。本文深入探讨了 .NET 的核心优势与特点,及其在企业级应用、移动开发、云计算、人工智能等领域的广泛应用,展示了其卓越的应用价值和未来发展前景。
70 5
|
2月前
|
存储 缓存 NoSQL
2款使用.NET开发的数据库系统
2款使用.NET开发的数据库系统
|
2月前
|
开发框架 JavaScript 前端开发
2024年全面且功能强大的.NET快速开发框架推荐,效率提升利器!
2024年全面且功能强大的.NET快速开发框架推荐,效率提升利器!

热门文章

最新文章