Flink如何应对背压问题

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 经常有人会问Flink如何处理背压问题。其实,答案很简单:Flink没用使用任何通用方案来解决这个问题,因为那根本不需要那样的方案。它利用自身作为一个纯数据流引擎的优势来优雅地响应背压问题。这篇文章,我们将介绍背压问题,然后我们将深挖Flink的运行时如何在task之间传输数据缓冲区内的数据以及流数据如何自然地两端降速来应对背压,最终将以一个小示例来演示它。

经常有人会问Flink如何处理背压问题。其实,答案很简单:Flink没用使用任何通用方案来解决这个问题,因为那根本不需要那样的方案。它利用自身作为一个纯数据流引擎的优势来优雅地响应背压问题。这篇文章,我们将介绍背压问题,然后我们将深挖Flink的运行时如何在task之间传输数据缓冲区内的数据以及流数据如何自然地两端降速来应对背压,最终将以一个小示例来演示它。

什么是背压

像Flink这样的流处理系统需要能够优雅地应对背压问题。背压通常产生于这样一种场景:当一个系统接收数据的速率高于它在一个瞬时脉冲内能处理的数据。许多日常问题都会导致背压。例如,垃圾回收卡顿可能会导致流入的数据快速堆积,或者一个数据源可能生产数据的速度过快。背压如果不能得到正确地处理,可能会导致资源被耗尽或者甚至出现更糟的情况导致数据丢失。

让我们来看一个简单的例子。假设存在一个数据流pipeline作为source,一个流处理job,以及一个sink以每秒500万条记录的速度处理数据,整个流处理程序处于稳定的状态。如下图所示(一个黑色的条状代表1百万个记录,该图是系统中其中1秒的快照):

no-backpressure

在同一时间点,不管是流处理job还是sink,如果有1秒的卡顿,那么将导致至少500万条记录的积压。换句话说,source可能会产生一个脉冲,显示在一秒内数据的生产速度突然翻倍。

backpressure

我们如何来应对类似这样的场景呢?当然,其中一种方案是删除这些元素。但数据丢失对许多流处理程序而言是不可接受的!这些应用要求exactly once的一致性。另一种方案是数据放在某个缓冲区内。缓冲区也需要被持久化,因为在失败的情况下,这些数据需要被重放 以防止数据丢失。理想情况下,这些数据应该被缓冲到某个持久化的channel里(例如,如果source本身提供持久化保证的情况下,可以是该source本身 – Apache Kafka是一个很不错的选择)。而理想的应对措施是:背压从sink到source的整个pipeline,同时对source进行限流来适配整个pipeline中最慢组件的速度,从而获得稳定状态:

steady-state

Flink中的背压

Flink运行时的构造部件是operators以及streams。每一个operator消费一个中间/过渡状态的流,对它们进行转换,然后生产一个新的流。描述这种机制最好的类比是:Flink使用有效的分布式阻塞队列来作为有界的缓冲区。如同Java里通用的阻塞队列跟处理线程进行连接一样,一旦队列达到容量上限,一个相对较慢的接受者将拖慢发送者。

以下面这个示例(两个task组成的一个简单的flow)来看Flink如何应对背压:

buffer-pools

1、记录“A”进入Flink,然后被Task 1处理 
2、记录被序列化进缓冲区 
3、缓冲区内的数据被移动到Task 2,task 2会从缓冲区内读取记录

这里有一个重要的事实:为了记录能被Flink处理,缓冲区必须是可用的

在Flink中这些分布式的队列被认为是逻辑流,而它们的有界容量可以通过每一个生产、消费流管理的缓冲池获得。缓冲池是缓冲区的集合,它们都可以在被消费完之后循环利用。这个观点很好理解:你从池里获取一个缓冲区,填进数据,然后在数据被消费后,将该缓冲区返还回缓冲池,之后你还可以再次使用它。

这些缓冲池的大小在运行时能动态变化。在不同的发送者/接收者存在不同的处理速度的情况下,网络栈里的内存缓冲区的数量(等于队列的容量)决定了系统能够提供的缓冲区的数量。Flink保证总是有足够的缓冲区提供给应用程序,但处理的速度是由用户的程序以及可用内存的数量决定的。内存越多,意味着系统可以轻松应对一定的瞬时背压(short periods,short GC)。越少的内存意味着需要对背压进行更多的“即时”响应(意思是,如果内存少缓冲区就容易被填满,那么需要立即作出响应,消费走数据才能应对这个问题)。

回到上面那个简单的示例:Task 1在其输出端被分配了一个缓冲池,Task 2在其输入端也有一个。如果当前有一个缓冲区可供序列化的“A”使用,我们就序列化它然后分配该缓冲区。

我们来看两种场景:

  • 本地传输:如果task1和task2都运行在同一个工作节点(TaskManager),缓冲区可以被直接共享给下一个task,一旦task 2消费了数据它会被回收。如果task 2比task 1慢,buffer会以比task 1填充的速度更慢的速度进行回收从而迫使task 1降速。

  • 远程传输:如果task 1和task 2运行在不同的工作节点上。一旦缓冲区内的数据被发送出去(TCP Channel),它就会被回收。在接收端,数据被拷贝到输入缓冲池的缓冲区中,如果没有缓冲区可用,从TCP连接中的数据读取动作将会被中断。输出端通常以watermark机制来保证不会有太多的数据在传输途中。如果有足够的数据已经进入可发送状态,会等到情况稳定到阈值以下才会进行发送。这可以保证没有太多的数据在路上。如果新的数据在消费端没有被消费(因为没有可用的缓冲区),这种情况会降低发送者发送数据的速度。

这个在固定大小的缓冲池之间的流示例,保证了Flink健壮的背压机制,从而使得task生产数据的速度跟消费的速度对等。

我们描述的这个方案可以从两个task之间的数据传输自然地扩展到更复杂的pipeline中,并保证背压在整个pipeline上扩散。

让我们来看一个简单的实验,它展示了Flink遇到背压问题后的表现。我们运行一个简单的生产者-消费者流拓扑,主要的功能是在本地的task之间传输数据,我们在task生产记录时改变它的速度。就本次测试而言,我们使用比默认配置更少的内存来使得背压问题得到凸显。我们为每个task配备两个大小为4096B(byte)的缓冲区。在通常的Flink部署场景中,task的缓冲区数量会比这更多,容量也会更大。另外,这个测试运行在单一的JVM中,但使用了完整的Flink功能栈。

下面这张图显示了:随着时间的改变,生产者(黄色线)和消费者(绿色线)基于所达到的最大吞吐(在单一JVM中每秒达到8百万条记录)的平均吞吐百分比。我们通过衡量task每5秒钟处理的记录数来衡量平均吞吐。

backpressure-experiment-small

首先,我们运行生产者task到它最大生产速度的60%(我们通过Thread.sleep()来模拟降速)。消费者以同样的速度处理数据。然后,我们将消费task的速度降至其最高速度的30%。你就会看到背压问题产生了,正如我们所见,生产者的速度也自然降至其最高速度的30%。接着,我们对消费者停止人为降速,之后生产者和消费者task都达到了其最大的吞吐。接下来,我们再次将消费者的速度降至30%,pipeline给出了立即响应:生产者的速度也被自动降至30%。最后,我们再次停止限速,两个task也再次恢复100%的速度。这所有的迹象表明:生产者和消费者在pipeline中的处理都在跟随彼此的吞吐而进行适当的调整,这就是我们在流pipeline中描述的行为。

总结

Flink与持久化的source(例如kafka),能够为你提供即时的背压处理,而无需担心数据丢失。Flink不需要一个特殊的机制来处理背压,因为Flink中的数据传输相当于已经提供了应对背压的机制。因此,Flink所获得的最大吞吐量由其pipeline中最慢的部件决定。


原文发布时间为:2016-04-21

本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
3月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
292 61
|
9月前
|
消息中间件 Java Kafka
Flink背压问题之checkpoint超时如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
|
9月前
|
消息中间件 监控 Java
一次线上Flink 背压情况分析之重新认识java dump 文件
一次线上Flink 背压情况分析之重新认识java dump 文件
240 0
|
9月前
|
消息中间件 缓存 监控
Flink背压原理以及解决优化
Flink背压原理以及解决优化
546 0
|
监控 Java 分布式数据库
Flink/Hbase - Sink 背压100% 与 hbase.util.RetryCounter.sleepUntilNextRetry 异常分析与排查
Flink-hbase 任务 hbase.util.RetryCounter.sleepUntilNextRetry 堆栈问题分析与排查。
475 0
Flink/Hbase - Sink 背压100% 与 hbase.util.RetryCounter.sleepUntilNextRetry 异常分析与排查
|
存储 消息中间件 缓存
flink背压问题解决记录
flink做流表维表关联,每天TB级数据量
708 0
|
流计算 缓存 监控
深入了解 Flink 网络栈(二):监控、指标和处理背压
在之前的文章中,我们从高级抽象到底层细节各个层面全面介绍了 Flink 网络栈的工作机制。作为这一系列的第二篇文章,本文将在第一篇的基础上更进一步,主要探讨如何监视与网络相关的指标,从而识别背压等因素带来的影响,或找出吞吐量和延迟的瓶颈所在。
|
1月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
199 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
2月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
zdl
|
3月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
212 56