因为这一章的内容基本上都是涉及向量的,先来一个2D向量类:Vector2D.as (再次强烈建议不熟悉向量运算的童鞋,先回去恶补一下高等数学-07章空间解释几何与向量代数.pdf)
package { import flash.display.Graphics; public class Vector2D { private var _x:Number; private var _y:Number; //构造函数 public function Vector2D(x:Number=0,y:Number=0) { _x=x; _y=y; } //绘制向量(以便于显示) public function draw(graphics:Graphics,color:uint=0):void { graphics.lineStyle(0,color); graphics.moveTo(0,0); graphics.lineTo(_x,_y); } //克隆对象 public function clone():Vector2D { return new Vector2D(x,y); } //位置归零 public function zero():Vector2D { _x=0; _y=0; return this; } //是否在零位置 public function isZero():Boolean { return _x==0&&_y==0; } //获得向量的角度 public function get angle():Number { return Math.atan2(_y,_x); } //设置向量的模(即大小) public function set length(value:Number):void { var a:Number=angle; _x=Math.cos(a)*value; _y=Math.sin(a)*value; } //获取向量大小的平方 public function get lengthSQ():Number { return _x*_x+_y*_y; } //获取向量的模(即大小) public function get length():Number { return Math.sqrt(lengthSQ); } //设置向量的角度 public function set angle(value:Number):void { var len:Number=length; _x=Math.cos(value)*len; _y=Math.sin(value)*len; } //截断向量(设置向量模最大值) public function truncate(max:Number):Vector2D { length=Math.min(max,length); return this; } //交换x,y坐标 public function reverse():Vector2D { _x=- _x; _y=- _y; return this; } //定义二个向量的加法运算 public function add(v2:Vector2D):Vector2D { return new Vector2D(_x+v2.x,_y+v2.y); } //定义二个向量的减法运算 public function subtract(v2:Vector2D):Vector2D { return new Vector2D(_x-v2.x,_y-v2.y); } //向量模的乘法运算 public function multiply(value:Number):Vector2D { return new Vector2D(_x*value,_y*value); } //向量模的除法运算 public function divide(value:Number):Vector2D { return new Vector2D(_x/value,_y/value); } //判定二个向量(坐标)是否相等 public function equals(v2:Vector2D):Boolean { return _x==v2.x&&_y==v2.y; } //设置x轴坐标 public function set x(value:Number):void { _x=value; } //返回x轴坐标 public function get x():Number { return _x; } //设置y轴坐标 public function set y(value:Number):void { _y=value; } //返回y轴坐标 public function get y():Number { return _y; } //单位化向量(即设置向量的模为1,不过这里用了一种更有效率的除法运算,从而避免了lengh=1带来的三角函数运算) public function normalize():Vector2D { if (length==0) { _x=1; return this; } //建议大家画一个基本的3,4,5勾股定理的直角三角形即可明白下面的代码 var len:Number=length; _x/=len; _y/=len; return this; } //判定向量是否为单位向量 public function isNormalized():Boolean { return length==1.0; } //点乘(即向量的点积) public function dotProd(v2:Vector2D):Number { return _x*v2.x+_y*v2.y; } //叉乘(即向量的矢量积) public function crossProd(v2:Vector2D):Number { return _x*v2.y-_y*v2.x; } //返回二个向量之间的夹角 public static function angleBetween(v1:Vector2D,v2:Vector2D):Number { if (! v1.isNormalized()) { v1=v1.clone().normalize(); } if (! v2.isNormalized()) { v2=v2.clone().normalize(); } return Math.acos(v1.dotProd(v2));//建议先回顾一下http://www.cnblogs.com/yjmyzz/archive/2010/06/06/1752674.html中提到的到夹角公式 } //判定给定的向量是否在本向量的左侧或右侧,左侧返回-1,右侧返回1 public function sign(v2:Vector2D):int { return perp.dotProd(v2)<0?-1:1; } //返回与本向量垂直的向量(即自身顺时针旋转90度,得到一个新向量) public function get perp():Vector2D { return new Vector2D(- y,x);//建议回顾一下"坐标旋转" } //返回二个矢量末端顶点之间的距离平方 public function distSQ(v2:Vector2D):Number { var dx:Number=v2.x-x; var dy:Number=v2.y-y; return dx*dx+dy*dy; } //返回二个矢量末端顶点之间的距离 public function dist(v2:Vector2D):Number { return Math.sqrt(distSQ(v2)); } //toString方法 public function toString():String { return "[Vector2D (x:"+_x+", y:"+_y+")]"; } } }
有几个地方稍加解释:
1、向量夹角的计算
public static function angleBetween(v1:Vector2D,v2:Vector2D):Number { if (! v1.isNormalized()) { v1=v1.clone().normalize(); } if (! v2.isNormalized()) { v2=v2.clone().normalize(); } return Math.acos(v1.dotProd(v2)); }
首先对向量v1,v2做了单位化处理,使其变成(模为1的)单位向量,这样夹角公式中的|a|×|b|(即分母)自然也就是1,公式演变成cos(θ)=a.b(即夹角余弦 等于 向量a与b的点乘),然后再对其取反余弦Math.acos,最终得到夹角
2、垂直向量的取得
上图是坐标(顺时针)旋转的标准公式,如果把α设置为90度,则
public function get perp():Vector2D { return new Vector2D(- y,x); }
3、判定其它向量是在自身的左侧还是右侧
如上图,先取得A的垂直向量,然后计算其它向量跟垂直向量的点积(点乘的公式,在物理上的表现之一为 W = |F|*|S|Cos(θ) ),如果其它向量与该垂直向量的夹角小于90度,点乘的值必为正,反之为负,所以也就能判定左右了(注意:这里的左右是指人站在坐标原点,顺着向量A的方向来看的)
再来定义一个机车类Vehicle.as
package { import flash.display.Sprite; public class Vehicle extends Sprite { //边界行为:是屏幕环绕(wrap),还是反弹{bounce} protected var _edgeBehavior:String=WRAP; //质量 protected var _mass:Number=1.0; //最大速度 protected var _maxSpeed:Number=10; //坐标 protected var _position:Vector2D; //速度 protected var _velocity:Vector2D; //边界行为常量 public static const WRAP:String="wrap"; public static const BOUNCE:String="bounce"; public function Vehicle() { _position=new Vector2D ; _velocity=new Vector2D ; draw(); } protected function draw():void { graphics.clear(); graphics.lineStyle(0); graphics.moveTo(10,0); graphics.lineTo(-10,5); graphics.lineTo(-10,-5); graphics.lineTo(10,0); } public function update():void { //设置最大速度 _velocity.truncate(_maxSpeed); //根据速度更新坐标向量 _position=_position.add(_velocity); //处理边界行为 if (_edgeBehavior==WRAP) { wrap(); } else if (_edgeBehavior==BOUNCE) { bounce(); } //更新x,y坐标值 x=position.x; y=position.y; //处理旋转角度 rotation=_velocity.angle*180/Math.PI; } //反弹 private function bounce():void { if (stage!=null) { if (position.x>stage.stageWidth) { position.x=stage.stageWidth; velocity.x*=-1; } else if (position.x<0) { position.x=0; velocity.x*=-1; } if (position.y>stage.stageHeight) { position.y=stage.stageHeight; velocity.y*=-1; } else if (position.y<0) { position.y=0; velocity.y*=-1; } } } //屏幕环绕 private function wrap():void { if (stage!=null) { if (position.x>stage.stageWidth) { position.x=0; } if (position.x<0) { position.x=stage.stageWidth; } if (position.y>stage.stageHeight) { position.y=0; } if (position.y<0) { position.y=stage.stageHeight; } } } //下面的都是属性定义 public function set edgeBehavior(value:String):void { _edgeBehavior=value; } public function get edgeBehavior():String { return _edgeBehavior; } public function set mass(value:Number):void { _mass=value; } public function get mass():Number { return _mass; } public function set maxSpeed(value:Number):void { _maxSpeed=value; } public function get maxSpeed():Number { return _maxSpeed; } public function set position(value:Vector2D):void { _position=value; x=_position.x; y=_position.y; } public function get position():Vector2D { return _position; } public function set velocity(value:Vector2D):void { _velocity=value; } public function get velocity():Vector2D { return _velocity; } override public function set x(value:Number):void { super.x=value; _position.x=x; } override public function set y(value:Number):void { super.y=value; _position.y=y; } } }
没有什么新东西,都是以前学到的知识,测试一下上面这二个类:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; public class VehicleTest extends Sprite { private var _vehicle:Vehicle; public function VehicleTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _vehicle=new Vehicle ; addChild(_vehicle); _vehicle.position=new Vector2D(100,100); _vehicle.velocity.length=5; _vehicle.velocity.angle=Math.PI/4;//45度 addEventListener(Event.ENTER_FRAME,onEnterFrame); } private function onEnterFrame(event:Event):void { _vehicle.update(); } } }
OK,现在可以进入正题了:(下面是从原书上直接抄过来的)
转向行为(steering behaviors)这一术语,指的是一系列使对象行动起来像似长有智商的算法。这些行为都归于人工智能或人工生命一类,是让对象呈现出拥有生命一般,对如何移动到目的地、捕捉或逃避其它对象、避开障碍物、寻求路径等做出因地适宜的决定。
一、寻找行为(Seek)
简单点讲,就是角色本身试图移动(包括转向)到目标位置(这个位置可能是固定的,也可能是移动的)。
先定义一个从Vehicle继承的子类:具有转向能力的机车SteeredVehicle.as
package { import flash.display.Sprite; //(具有)转向(行为的)机车 public class SteeredVehicle extends Vehicle { private var _maxForce:Number=1;//最大转向力 private var _steeringForce:Vector2D;//转向速度 public function SteeredVehicle() { _steeringForce = new Vector2D(); super(); } public function set maxForce(value:Number):void { _maxForce=value; } public function get maxForce():Number { return _maxForce; } override public function update():void { _steeringForce.truncate(_maxForce);//限制为最大转向速度,以避免出现突然的大转身 _steeringForce=_steeringForce.divide(_mass);//惯性的体现 _velocity=_velocity.add(_steeringForce); _steeringForce = new Vector2D(); super.update(); } } }
代码不难理解:仅增加了最大转向力maxForce(主要是为了防止机车一瞬间就突然移动到目标位置,会引起视觉上的动画不连贯);另外对update做了重载处理,在更新机车x,y坐标及朝向(即rotation)之前,累加了转向速度并考虑到了物体的惯性。
再来考虑“寻找(seek)”行为,先看下面这张图:
根据向量运算,可以先得到机车期望的理想速度(desireVolocity)--注:如果用这个速度行驶,物体立马就能到达目标点。当然我们要体现物体是逐渐靠近目标点的,所以显然不可能用理想速度前行,而是要计算出转向速度force,最终再把转向速度force叠加到自身的速度_velocity上,这样机车就能不断向目标点移动了。
//寻找(Seek)行为 public function seek(target: Vector2D):void { var desiredVelocity:Vector2D=target.subtract(_position); desiredVelocity.normalize(); desiredVelocity=desiredVelocity.multiply(_maxSpeed);//注:这里的_maxSpeed是从父类继承得来的 var force:Vector2D=desiredVelocity.subtract(_velocity); _steeringForce=_steeringForce.add(force); }
把这段代码加入到SteeredVehicle.as中就能让SteeredVehicle类具有seek行为,下面是测试代码:
package { import SteeredVehicle; import Vector2D; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; public class SeekTest extends Sprite { private var _vehicle:SteeredVehicle; public function SeekTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _vehicle = new SteeredVehicle(); addChild(_vehicle); addEventListener(Event.ENTER_FRAME, onEnterFrame); } private function onEnterFrame(event:Event):void { _vehicle.seek(new Vector2D(mouseX, mouseY));//以当前鼠标位置为目标点 _vehicle.update(); } } }
二、避开(flee)行为
它跟寻找(seek)行为正好是相反的,可以通俗的理解为:“既然发现了目标,那么就调头逃跑吧”,所以代码上只要改一行即可
//避开(flee)行为 public function flee(target: Vector2D):void { var desiredVelocity:Vector2D=target.subtract(_position); desiredVelocity.normalize(); desiredVelocity=desiredVelocity.multiply(_maxSpeed); var force:Vector2D=desiredVelocity.subtract(_velocity); _steeringForce=_steeringForce.subtract(force);//这是唯一与seek行为不同的地方,一句话解释:既然发现了目标,那就调头就跑吧! }
同样,把上述代码加入到SteeredVehicle.as中就能让SteeredVehicle类具有flee行为,测试代码:
package { import SteeredVehicle; import Vector2D; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; public class FleeTest extends Sprite { private var _vehicle:SteeredVehicle; public function FleeTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _vehicle = new SteeredVehicle(); _vehicle.position = new Vector2D(stage.stageWidth/2,stage.stageHeight/2); _vehicle.edgeBehavior = Vehicle.BOUNCE; addChild(_vehicle); addEventListener(Event.ENTER_FRAME, onEnterFrame); } private function onEnterFrame(event:Event):void { _vehicle.flee(new Vector2D(mouseX, mouseY));//避开鼠标当前位置 _vehicle.update(); } } }
seek行为与flee行为组合起来,可以完成类似“警察抓小偷”的效果
package { import SteeredVehicle; import Vector2D; import Vehicle; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; import flash.text.TextField; import flash.text.TextFormat; public class SeekFleeTest1 extends Sprite { private var _seeker:SteeredVehicle;//寻找者(可理解为:警察) private var _fleer:SteeredVehicle;//躲避者(事理解为:小偷) private var _seekerSpeedSlider:SimpleSlider ;//警察的最大速度控制滑块 private var _txtSeekerMaxSpeed:TextField; private var _fleerSpeedSlider:SimpleSlider ;//小偷的最大速度控制滑块 private var _txtFleerMaxSpeed:TextField; public function SeekFleeTest1() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _seeker = new SteeredVehicle(0xff0000); _seeker.position=new Vector2D(); _seeker.edgeBehavior=Vehicle.BOUNCE; addChild(_seeker); _seeker.maxSpeed = 5; _fleer = new SteeredVehicle(0x0000ff); _fleer.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random()); _fleer.edgeBehavior=Vehicle.BOUNCE; addChild(_fleer); addEventListener(Event.ENTER_FRAME, onEnterFrame); addSpeedControl(); } //添加速度控制组件 private function addSpeedControl():void{ _seekerSpeedSlider = new SimpleSlider(5,25,10); _seekerSpeedSlider.rotation = 90; _seekerSpeedSlider.x = 150; _seekerSpeedSlider.y = 20; _seekerSpeedSlider.backColor = _seekerSpeedSlider.backBorderColor = _seekerSpeedSlider.handleColor = _seekerSpeedSlider.handleBorderColor = 0xff0000; addChild(_seekerSpeedSlider); _seekerSpeedSlider.addEventListener(Event.CHANGE,onSeekerSpeedChange); _txtSeekerMaxSpeed = new TextField(); var _tfseeker:TextFormat = new TextFormat(); _tfseeker.color = 0xff0000; _txtSeekerMaxSpeed.defaultTextFormat = _tfseeker; _txtSeekerMaxSpeed.text = "10"; addChild(_txtSeekerMaxSpeed); _txtSeekerMaxSpeed.y = _seekerSpeedSlider.y -6; _txtSeekerMaxSpeed.x = _seekerSpeedSlider.x +3; _fleerSpeedSlider = new SimpleSlider(5,25,10); _fleerSpeedSlider.rotation = 90; _fleerSpeedSlider.x = 480; _fleerSpeedSlider.y = 20; _fleerSpeedSlider.backColor = _fleerSpeedSlider.backBorderColor = _fleerSpeedSlider.handleColor = _fleerSpeedSlider.handleBorderColor = 0x0000ff; addChild(_fleerSpeedSlider); _fleerSpeedSlider.addEventListener(Event.CHANGE,onFleerSpeedChange); _txtFleerMaxSpeed = new TextField(); var _tffleer:TextFormat = new TextFormat(); _tffleer.color = 0x0000ff; _txtFleerMaxSpeed.defaultTextFormat = _tffleer; _txtFleerMaxSpeed.text = "10"; addChild(_txtFleerMaxSpeed); _txtFleerMaxSpeed.y = _fleerSpeedSlider.y -6; _txtFleerMaxSpeed.x = _fleerSpeedSlider.x +3; } function onSeekerSpeedChange(e:Event):void{ _seeker.maxSpeed = _seekerSpeedSlider.value; _txtSeekerMaxSpeed.text = _seekerSpeedSlider.value.toString(); } function onFleerSpeedChange(e:Event):void{ _fleer.maxSpeed = _fleerSpeedSlider.value; _txtFleerMaxSpeed.text = _fleerSpeedSlider.value.toString(); } private function onEnterFrame(event:Event):void { _seeker.seek(_fleer.position);//警察 抓 小偷 _fleer.flee(_seeker.position);//小偷 躲 警察 _seeker.update(); _fleer.update(); } } }
调整红色滑块和蓝色滑块,可改变seeker与fleer的最大速度。(注:代码中的SimpleSlider在Flash/Flex学习笔记(46):正向运动学中能找到) 如果愿意,您还可以加入碰撞检测,比如当“警察”抓住“小偷”时,显示一个提示:“小样,我抓住你了!”
如果加入更多的物体,比如A,B,C三个,让A追逐B同时躲避C,B追逐C同时躲避A,C追逐A同时躲避B,将是下面这副模样:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; public class SeekFleeTest2 extends Sprite { private var _vehicleA:SteeredVehicle; private var _vehicleB:SteeredVehicle; private var _vehicleC:SteeredVehicle; public function SeekFleeTest2() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _vehicleA=new SteeredVehicle(0xff0000) ; _vehicleA.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random()); _vehicleA.edgeBehavior=Vehicle.BOUNCE; addChild(_vehicleA); _vehicleB=new SteeredVehicle(0x0000ff) ; _vehicleB.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random()); _vehicleB.edgeBehavior=Vehicle.BOUNCE; addChild(_vehicleB); _vehicleC=new SteeredVehicle(0x00ff00) ; _vehicleC.position=new Vector2D(stage.stageWidth*Math.random(),stage.stageHeight*Math.random()); _vehicleC.edgeBehavior=Vehicle.BOUNCE; addChild(_vehicleC); addEventListener(Event.ENTER_FRAME,onEnterFrame); } private function onEnterFrame(event:Event):void { //A追求B,躲避C _vehicleA.seek(_vehicleB.position); _vehicleA.flee(_vehicleC.position); //B追求C,躲避A _vehicleB.seek(_vehicleC.position); _vehicleB.flee(_vehicleA.position); //C追求A,躲避B _vehicleC.seek(_vehicleA.position); _vehicleC.flee(_vehicleB.position); _vehicleA.update(); _vehicleB.update(); _vehicleC.update(); } } }
Flash动画的边界,犹如人世间的一张网,将你我他都罩住,我们都在追寻一些东西,同时也在逃避一些东西,于是乎:爱我的人我不爱,我爱的人爱别人······ 现实如此,程序亦如此。
三、到达(arrive)行为
到达行为其实跟寻找行为很相似,区别在于:寻找行为发现目标后,不断移动靠近目标,但速度不减,所以会出现最终一直在目标附近二头来回跑,停不下来。而到达行为在靠近目标时会慢慢停下来,最终停在目标点。(这个咋这么熟悉?对了,这就是以前学习过来的缓动动画,详见Flash/Flex学习笔记(38):缓动动画)
//到达(arrive)行为 public function arrive(target: Vector2D):void { var desiredVelocity:Vector2D=target.subtract(_position); desiredVelocity.normalize(); var dist:Number=_position.dist(target); if (dist>_arrivalThreshold) { desiredVelocity=desiredVelocity.multiply(_maxSpeed); } else { desiredVelocity=desiredVelocity.multiply(_maxSpeed*dist/_arrivalThreshold); } var force:Vector2D=desiredVelocity.subtract(_velocity); _steeringForce=_steeringForce.add(force); }
当然这里的比例因子:_arrivalThreshold需要先定义,同时为了方便动态控制,还要对外以属性的形式暴露出来
private var _arrivalThreshold:Number=100;//到达行为的距离阈值(小于这个距离将减速) public function set arriveThreshold(value: Number):void { _arrivalThreshold=value; } public function get arriveThreshold():Number { return _arrivalThreshold; }
把上面这二段代码加入SteeredVehicle.as中,然后测试一把:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; public class ArriveTest extends Sprite { private var _vehicle:SteeredVehicle; public function ArriveTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _vehicle=new SteeredVehicle ; addChild(_vehicle); addEventListener(Event.ENTER_FRAME,onEnterFrame); } private function onEnterFrame(event:Event):void { _vehicle.arrive(new Vector2D(mouseX,mouseY)); _vehicle.update(); } } }
四、追捕(pursue)行为
追捕跟寻找很类似,不过区别在于:寻找(seek)是发现目标后,以预定的速度向目标靠拢,不管目标跑得多快还是多慢,所以如果目标比寻找者(seeker)要移动得快,seeker永远是追不上的;而追捕行为是要在目标前进的路上,提前把目标拦截到,也可以理解为先预定一个(target前进路线上的)目标位置,然后再以寻找行为接近该位置,所以只要预定目标位置计算得合理,就算追捕者的速度要慢一点儿,也是完全有可能把目标给抓住的。
代码:
//追捕(pursue)行为 public function pursue(target:Vehicle):void { var lookAheadTime:Number=position.dist(target.position)/_maxSpeed;//假如目标不动,追捕者开足马力赶过去的话,计算需要多少时间 var predictedTarget:Vector2D=target.position.add(target.velocity.multiply(lookAheadTime)); seek(predictedTarget); }
解释:假如目标不动的话,我们先计算二者之间的距离,然后以最大速度狂奔过去,大概需要lookAheadTime这么长时间,然后根据这个时间,得到预定的目标位置,再以该位置为目标,寻找(seek)过去。(当然这种算法并不精确,但是处理起来比较简单,重要的是:配合Enter_Frame事件后,它确实管用!)
测试代码:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; import flash.events.MouseEvent; import flash.text.TextField; public class PursueTest extends Sprite { private var _seeker:SteeredVehicle; private var _pursuer:SteeredVehicle; private var _target:Vehicle; private var _isRun:Boolean = false; private var _text:TextField; public function PursueTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _seeker = new SteeredVehicle(0x0000ff); addChild(_seeker); _pursuer = new SteeredVehicle(0xff0000); addChild(_pursuer); _target = new Vehicle(0x000000); _target.velocity.length=15;//目标对象跑得快一点,这样才能看出区别 addChild(_target); _seeker.edgeBehavior = _target.edgeBehavior = _pursuer.edgeBehavior = Vehicle.BOUNCE; stage.addEventListener(MouseEvent.CLICK,stageClick); _text = new TextField(); _text.text = "点击鼠标开始演示"; _text.height = 20; _text.width = 100; _text.x = stage.stageWidth/2 - _text.width/2; _text.y = stage.stageHeight/2 - _text.height/2; addChild(_text); } private function onEnterFrame(event:Event):void { _seeker.seek(_target.position); _seeker.update(); _pursuer.pursue(_target); _pursuer.update(); _target.update(); } private function stageClick(e:MouseEvent):void{ if (!_isRun){ _target.position=new Vector2D(stage.stageWidth/2,stage.stageHeight/2); addEventListener(Event.ENTER_FRAME, onEnterFrame); _isRun = true; removeChild(_text); } else{ removeEventListener(Event.ENTER_FRAME, onEnterFrame); _isRun = false; _target.position = _seeker.position = _pursuer.position = new Vector2D(0,0); addChild(_text); _text.text = "点击鼠标重新开始"; } } } }
这里为了区别“追捕行为”与"寻找行为",我们同时加入了追捕者(_pursuer-红色)与寻找者(_seeker-蓝色),通过下面的演示可以看出,(红色)追捕者凭借算法上的优势,始终能更接近目标。
五、躲避(evade)行为
躲避跟追捕正好相反,可以理解为:如果我有可能挡在目标前进的路线上了,我就提前回避,让开这条道。(俗话:好狗不挡道)
//躲避(evade)行为 public function evade(target: Vehicle):void { var lookAheadTime:Number=position.dist(target.position)/_maxSpeed; var predictedTarget:Vector2D=target.position.add(target.velocity.multiply(lookAheadTime)); flee(predictedTarget);//仅仅只是这里改变了而已 }
把前面学到的这些个行为放在一起乱测一通吧:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; import flash.events.MouseEvent; import flash.text.TextField; public class PursueEvadeTest extends Sprite { private var _pursuer:SteeredVehicle; private var _evader:SteeredVehicle; private var _target:SteeredVehicle; private var _seeker:SteeredVehicle; private var _fleer:SteeredVehicle; private var _pursuer2:SteeredVehicle; private var _evader2:SteeredVehicle; private var _text:TextField; private var _isRun:Boolean = false; public function PursueEvadeTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _pursuer=new SteeredVehicle(0xff0000); addChild(_pursuer); _evader=new SteeredVehicle(0x00ff00); addChild(_evader); _target=new SteeredVehicle(0x000000); _target.velocity.length=15; addChild(_target); _seeker=new SteeredVehicle(0xff00ff); addChild(_seeker); _fleer=new SteeredVehicle(0xffff00); addChild(_fleer); _pursuer2 = new SteeredVehicle(); addChild(_pursuer2); _evader2 = new SteeredVehicle(); addChild(_evader2); _evader2.edgeBehavior = _pursuer2.edgeBehavior = _target.edgeBehavior = _evader.edgeBehavior = _pursuer.edgeBehavior = _fleer.edgeBehavior = _seeker.edgeBehavior = Vehicle.BOUNCE ; _text = new TextField(); _text.text="点击鼠标开始演示"; _text.height=20; _text.width=100; _text.x=stage.stageWidth/2-_text.width/2; _text.y=stage.stageHeight/2-_text.height/2; addChild(_text); stage.addEventListener(MouseEvent.CLICK,stageClick); } private function stageClick(e:MouseEvent):void { if (! _isRun) { _target.position=new Vector2D(stage.stageWidth/2,stage.stageHeight/2); _fleer.position=new Vector2D(400,300); _evader2.position=new Vector2D(400,200); _evader.position=new Vector2D(400,100); addEventListener(Event.ENTER_FRAME, onEnterFrame); _isRun=true; removeChild(_text); } else { _pursuer2.position =_evader2.position = _evader.position = _pursuer.position = _target.position=_seeker.position=_pursuer.position= new Vector2D(0,0); removeEventListener(Event.ENTER_FRAME, onEnterFrame); _isRun=false; addChild(_text); _text.text="点击鼠标重新开始"; } } private function onEnterFrame(event:Event):void { _seeker.seek(_target.position); _fleer.flee(_target.position); _pursuer.pursue(_target); _evader.evade(_target); _pursuer2.pursue(_evader2); _evader2.evade(_pursuer2); _target.update(); _seeker.update(); _pursuer.update(); _fleer.update(); _evader.update(); _pursuer2.update(); _evader2.update(); } } }
对于这个示例,也许看不出”避开(flee)“与“躲避(evade)”的区别,反正都是不挡道嘛,没关系,下面会有机会看到区别的
六、漫游(wander)行为
顾名思义,就是要让物体在屏幕上漫不经心的闲逛。可能大家首先想到的是让速度每次随机改变一些(类似布朗运动),但很快您就会发现这样做的结果:物体象抽风一样在屏幕上乱动,一点都不连续,体现不出“漫不经心”闲逛的特征。所以我们需要一种更为平滑的处理算法:
如上图,先在物体运动的正前方,画一个指定半径的圈,然后让向量offset每次随机旋转一个小小的角度,这样最终能得到转向力向量force=center+offset,最终把向量force叠加到物体的速度上即可.
private var _wanderAngle:Number=0; private var _wanderDistance:Number=10; private var _wanderRadius:Number=5; private var _wanderRange:Number=1; //漫游 public function wander():void { var center:Vector2D=velocity.clone().normalize().multiply(_wanderDistance); var offset:Vector2D=new Vector2D(0); offset.length=_wanderRadius; offset.angle=_wanderAngle; _wanderAngle+=(Math.random()-0.5)*_wanderRange; var force:Vector2D=center.add(offset); _steeringForce=_steeringForce.add(force); } public function set wanderDistance(value:Number):void { _wanderDistance=value; } public function get wanderDistance():Number { return _wanderDistance; } public function set wanderRadius(value:Number):void { _wanderRadius=value; } public function get wanderRadius():Number { return _wanderRadius; } public function set wanderRange(value:Number):void { _wanderRange=value; } public function get wanderRange():Number { return _wanderRange; }
虽然这次增加的代码看上去比较多,但是大部分是用于封装属性的,关键的代码并不难理解。好了,做下基本测试:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; public class WanderTest extends Sprite { private var _vehicle:SteeredVehicle; public function WanderTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _vehicle = new SteeredVehicle(); _vehicle.maxSpeed = 3; _vehicle.wanderDistance = 50; _vehicle.position=new Vector2D(200,200); //_vehicle.edgeBehavior = Vehicle.BOUNCE; addChild(_vehicle); addEventListener(Event.ENTER_FRAME, onEnterFrame); } private function onEnterFrame(event:Event):void { _vehicle.wander(); _vehicle.update(); } } }
如果让漫游行为跟前面提到的行为组合,效果会更好一些:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; import flash.events.MouseEvent; import flash.text.TextField; public class FleeEvadeWanderTest extends Sprite { private var _pursuer:SteeredVehicle; private var _evader:SteeredVehicle; private var _target:SteeredVehicle; private var _seeker:SteeredVehicle; private var _fleer:SteeredVehicle; private var _text:TextField; private var _isRun:Boolean = false; public function FleeEvadeWanderTest() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _evader=new SteeredVehicle(0x00ff00);//躲避者(绿色) addChild(_evader); _target=new SteeredVehicle(0x000000);//目标(黑色) _target.velocity.length = 20; addChild(_target); _fleer=new SteeredVehicle(0xffff00);//避开者(黄色) addChild(_fleer); _target.edgeBehavior = _evader.edgeBehavior = _fleer.edgeBehavior = Vehicle.BOUNCE; _text = new TextField(); _text.text="点击鼠标开始演示"; _text.height=20; _text.width=100; _text.x=stage.stageWidth/2-_text.width/2; _text.y=stage.stageHeight/2-_text.height/2; addChild(_text); stage.addEventListener(MouseEvent.CLICK,stageClick); } private function stageClick(e:MouseEvent):void { if (! _isRun) { _target.position=new Vector2D(50,50); _evader.position = _fleer.position=new Vector2D(stage.stageWidth/2,stage.stageHeight/2); addEventListener(Event.ENTER_FRAME, onEnterFrame); _isRun=true; removeChild(_text); } else { _evader.position = _target.position=_fleer.position=new Vector2D(0,0); removeEventListener(Event.ENTER_FRAME, onEnterFrame); _isRun=false; addChild(_text); _text.text="点击鼠标重新开始"; } } private function onEnterFrame(event:Event):void { _target.wander(); _fleer.flee(_target.position); _evader.evade(_target); _target.update(); _fleer.update(); _evader.update(); } } }
前面提到了flee(避开)与evade(躲避)很难看出区别,但在这个示例里,大概能看出一些细节上的些许不同:flee算法是以目标当前的位置为做基点避开的,而evade是以目标前进方向上未来某个时时间点的位置做为基点避开的,所以相对而言,(绿色的)evader更有前瞻性--即所谓的先知先觉,而(黄色的)fleer只是见知见觉,最终在视觉效果上,evader总是希望跟目标以反方向逃开(这样能躲得更远,更安全一点)。
注:博客园的nasa(微软MVP),对于本章内容也有相应的Sliverlight实现,推荐大家对照阅读。