在工程应用和科学研究中,经常要研究变量之间的关系y=f(x)。但对于函数f(x),常常得不到一个具体的解析表达式,它可能是通过观测或实验得到的一组数据(x,f(x)),x为一向量;或则是解析表达式非常复杂,不便于计算和使用。因此我们需要寻找一个计算比较简单的函数S(x)近似代替f(x),并使得S(x)=f(x),
这种方法就称为插值法。
具体代码实现如下:
牛顿插值函数如下:
为了使用上面两个函数,脚本文件如下:
结果显示如下:
常用的插值法有:
一维插值法:拉格朗日插值、牛顿插值、分段低次插值、埃尔米特插值、样条插值。
二维插值法:双线性插值、双二次插值。
拉格朗日插值法
已知函数f(x)的n+1个互异的节点
处的函数值
,则其拉格朗日插值多项式可以写为:
其中,
为插值基函数,其表达式为:
牛顿插值法
已知函数f(x)的n+1个互异的节点
处的函数值
,则其牛顿插值多项式可以写为:
其中,
为f(x)的k阶差商(也叫均差),可以表示如下:
也可以由函数值
线性表示为:
根据上述基本原理和公式,很容易编程实现。我们假设根据下面的数据表,来分别用拉格朗日插值和牛顿插值来计算f(8.4)的近似值:
x | 8.1 | 8.3 | 8.6 | 8.7 |
f(x) | 16.94410 | 17.56492 | 18.50515 | 18.82091 |
具体代码实现如下:
#include<iostream> #include<vector> using namespace std; //-----------------拉格朗日插值法BEGIN---------------------// double Lagrange(vector<double> x,vector<double> y ,double X)//x,y分别为x和f(x)的值,X为要求的点,返回值为f(X) { double result=0; double temp=1; for(int i=0;i<x.size();i++) { temp=1; for(int j=0;j<x.size();j++) { if(j!=i) { temp=temp*(X-x.at(j))/(x.at(i)-x.at(j)); } } result+=temp*y.at(i); } return result; } //-----------------拉格朗日插值法END---------------------// //-----------------牛顿法BEGIN---------------------// double DifferenceQuotient(vector<double> x,vector<double> y ,int k)//计算差商 { double result=0; for(int i=0;i<=k;i++) { double temp=1; for(int j=0;j<=k;j++) { if(i!=j) { temp=temp/(x.at(i)-x.at(j)); } } temp=y.at(i)*temp; result+=temp; } return result; } double Newton(vector<double> x,vector<double> y ,double X) { double result=y.at(0); double temp=1; for(int i=1;i<x.size();i++) { temp=1; for(int j=0;j<i;j++) { temp*=(X-x.at(j)); } result+=DifferenceQuotient(x,y,i)*temp; } return result; } //-----------------牛顿法END---------------------// void main() { vector<double> x; vector<double> y; //这里输入x的值,这里使用向量vector是为了方便添加数据点,可以根据实际的观测点更改 x.push_back(8.1); x.push_back(8.3); x.push_back(8.6); x.push_back(8.7); //这里输入f(x)的值 y.push_back(16.94410); y.push_back(17.56492); y.push_back(18.50515); y.push_back(18.82091); cout.precision(10);//设置显示精度 //下面是根据上面的4个样本点及其函数值来分别使用两种插值法计算在x=8.4处的函数值 cout<<"使用拉格朗日插值法:"; cout<<Lagrange(x,y,8.4)<<endl; cout<<"使用牛顿插值法:"; cout<<Newton(x,y,8.4)<<endl; }程序运行结果如下:
优缺点比较:
拉格朗日插值法:插值多项式和插值基函数的形式对称,容易编程。但是,增加节点时,需要重新计算每一个插值基函数。
牛顿插值法:当插值节点增加时,之前已计算的结果仍然能用,每增加一个节点,只要再增加一项即可,从而避免了重复性计算。
Matlab实现多种插值函数
现在也有很多人使用Matlab来进行算法的仿真,我在这里把大二时数学建模整理的插值算法函数也共享出来,
链接为
:http://download.csdn.net/detail/tengweitw/8387451具体的使用说明在文件中都有说明。下面就拿我们刚才所讲的拉格朗日插值和牛顿插值来举例说明,
还是使用上面的数据表,则拉格朗日插值函数如下:
function f = Language(x,y,x0) %x y为坐标向量 x0为插值点的x坐标|| f0为x0对应的值 syms t; if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; end %检错 f = 0.0; for(i = 1:n) l = y(i); for(j = 1:i-1) l = l*(t-x(j))/(x(i)-x(j)); end; for(j = i+1:n) l = l*(t-x(j))/(x(i)-x(j)); %计算拉格朗日基函数 end; f = f + l; %计算拉格朗日插值函数 simplify(f); %化简 if(i==n) if(nargin == 3) f = subs(f,'t',x0); %计算插值点的函数值 else f = collect(f); %将插值多项式展开 f = vpa(f,6); %将插值多项式的系数化成6位精度的小数 end end end
牛顿插值函数如下:
function f = Newton(x,y,x0) %x y为坐标向量 x0为插值点的x坐标|| f0为x0对应的值 syms t; if(length(x) == length(y)) n = length(x); c(1:n) = 0.0; else disp('x和y的维数不相等!'); return; end f = y(1); y1 = 0; l = 1; for(i=1:n-1) for(j=i+1:n) y1(j) = (y(j)-y(i))/(x(j)-x(i)); end c(i) = y1(i+1); l = l*(t-x(i)); f = f + c(i)*l; simplify(f); y = y1; if(i==n-1) if(nargin == 3) f = subs(f,'t',x0); else f = collect(f); %将插值多项式展开 f = vpa(f, 6); end end end
为了使用上面两个函数,脚本文件如下:
clear all clc format long format compact x=[8.1 8.3 8.6 8.7 ]; y=[ 16.94410 17.56492 18.50515 18.82091]; x0=8.4; disp('拉格朗日插值法:') disp(Language(x,y,x0)) disp('牛顿插值法:') disp(Newton(x,y,x0))
结果显示如下: