动态规划法——求解0-1背包问题

简介:  问题描述 0-1背包问题与背包问题(贪心法——背包问题)最大的不同就是背包问题的子问题彼此之间没有联系,所以只要找出解决方法,然后用贪心算法,取得局部最优解就ok了,但是0-1背包问题更复杂,因为物品不可再分,导致了子问题之间是有联系的。



 问题描述





0-1背包问题与背包问题(贪心法——背包问题)最大的不同就是背包问题的子问题彼此之间没有联系,所以只要找出解决方法,然后用贪心算法,取得局部最优解就ok了,但是0-1背包问题更复杂,因为物品不可再分,导致了子问题之间是有联系的。



问题分析



      1,刻画背包问题最优解的结构




    

        2,数学描述




   

伪代码解读



 


当上段代码运算完成之后,对于C[i,w]的表:



然后根据上面构造的表,求最优解:








  小结


     动态规划法在判断是否含有第i个物品时,通过判断C[I,w]是否等于C[i-1,w]来得出是否含有第i个物品,感觉挺巧妙的,不过前面构造C[I,w]表的过程感觉工程量好大啊。









目录
相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
85 1
|
3月前
动态规划——斐波那契模型
本文介绍了动态规划的基本步骤及其在几个典型问题中的应用。首先概述了动态规划的四个关键步骤:状态表示、状态转移方程、初始化及填表顺序,并说明了如何确定返回值。接着通过具体实例讲解了第 N 个泰波那契数、三步问题、使用最小花费爬楼梯以及解码方法等问题的求解过程,详细阐述了每一步的具体实现方法与代码示例。最后还讨论了如何优化初始化过程以简化编码。
38 4
动态规划——斐波那契模型
|
3月前
|
存储 算法
算法之背包问题
本文讨论了可分背包问题和0-1背包问题的区别及解决方法,其中可分背包问题可以使用贪心算法解决,而0-1背包问题则通常采用动态规划方法来找到最大价值的解决方案。
50 0
算法之背包问题
|
5月前
|
算法 Java 测试技术
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
这篇文章介绍了基于动态规划法的三种算法:解决背包问题的递归和自底向上实现、Warshall算法和Floyd算法,并提供了它们的伪代码、Java源代码实现以及时间效率分析。
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
|
8月前
|
C++
C++代码实现Jacobi迭代法
C++代码实现Jacobi迭代法
212 0
|
8月前
|
消息中间件 Kubernetes NoSQL
动态规划- 背包问题总结(二)
动态规划- 背包问题总结(二)
|
存储 算法 搜索推荐
动态规划算法
动态规划算法是一种常用的优化问题求解方法,主要用于解决具有重叠子问题和最优子结构性质的问题。动态规划算法的基本思想是将原问题拆分成若干个子问题,通过求解子问题的最优解来求解原问题的最优解。动态规划算法通常包含以下三个步骤:
130 2
|
机器学习/深度学习 人工智能 JavaScript
动态规划算法(二)
动态规划算法
73 0
|
机器学习/深度学习 自然语言处理
动态规划算法(一)
动态规划算法
97 0
|
存储 算法
【趣学算法】Day3 贪心算法——背包问题
【趣学算法】Day3 贪心算法——背包问题
173 0