Topology and Geometry in OpenCascade-Face
摘要Abstract:本文简要介绍了几何造型中的边界表示法(BRep),并结合程序说明OpenCascade中的边界表示的具体实现,即拓朴与几何的联系。对具有几何信息的拓朴结构顶点(vertex)、边(edge)、面(face)进行了详细说明。本文仅对面(Face)进行说明。
关键字Key Words:OpenCascade、BRep、Topology、Geometry、Face
一、引言 Introduction
面(Face)由一个外环和若干个内环来表示,内环完全在外环之内。根据环(Wire)的定义,在面上沿环的方向前进,左侧总在面内,右侧总在面外。面有方向性,一般用其外法矢方向作为该面的正向。若一个面的法矢向外,称为正向面;反之,称为反向面。面的形状(surface)由面的几何信息来表示,可以是平面或曲面,平面可用平面方程来描述,曲面可以用控制多边形或型值点来描述(NURBS曲面),也可用曲面方程(隐式、显式或参数形式)来描述。对于参数曲面,通常在其二维参数域上定义环,这样就可以由一些二维的有向边来表示环,集合运算中对面的分割也可在二维参数域上进行。
OpenCascade中的面结构如下图所示:
Figure 1.1 OpenCascade Face
根据其类图可知,面除了其参数曲面mySurface外,还包含显示曲面的剖分(由三角形组成)。当面在着色显示模式下时会计算出面的三角形。可视化的算法是由BRepMesh::Mesh()来为每个面三角剖分后用来显示。
二、面 Face
面(Face)是用来描述三维实体边界的拓朴实体。面是由底层的曲面及一个或多个环(Wire)来描述。例如,一个圆柱体包含三个面:底面、顶面和侧面。每个面都是无限的(无界的)(Geom_Plane和Geom_CylindricalSurface),通过边界来限定无限的面得到面。即用位于Geom_Circle上的边形成的环,限定出底面和顶面。侧面包含四条边:其中两条边与顶面和底面其享,剩下的两条边是缝合边(seam edge),参看之前的讨论。限定侧面的环包含缝合边两次,两个缝合边具有不同的朝向。
2.1 曲面 Surface
让我们简要回顾一下什么是曲面(surface)。如果你在高中时学过数学分析(mathematical analysis),那么你可能对这个概念已经熟记于心。如果没学过,那么可能需要读些文章来自学。在wikipedia上有关于参数曲面的简单例子。
曲面将二维参数空间{u, v}映射到三维空间。如下图所示:
Figure 2.1 Map parameter space{u, v} into 3D space
参数区间可以有界,也可以是无界的,也可以只在一个方向上有界。如平面(Plane)的参数空间是无界的;NURBS是有界的;圆柱面(Cylindrical Surface)在U方向上有界(U∈[0,2π]),在V方向上是无界的。
Geom_Surface::Value()返回一个对应于参数空间中的参数(U,V)的空间点(X,Y,Z)。例如:地球上的任意一点都由纬度(V)和经度(U)表示,但是在世界坐标系中可以看作三维点(假如地球的中心定义为原点)。这个函数是纯虚函数,所有派生自Geom_Surface的类都有对这个函数的实现,使计算各种曲面上对应参数的空间点的方式统一。
让我们回想一下,边必须具有三维曲线(3D Curve)和曲面空间中的参数曲线(pcurve)。而OpenCascade要求面的边界(环wire)在三维和二维空间中必须是闭合的。因此,圆柱的侧面是采用前面我们讨论的那样来描述的。
2.2 朝向 Orientation
面的朝向表示面的法向与曲面法向之间的关系(Face orientation shows how face normal is aligned with its surface normal)。若面的朝向是TopAbs_FORWARD(向前),则面的法向与曲面的法向一致;若面的朝向是TopAbs_REVERSED(反向),则面的法向与曲面的法向相反。面的法向表示材质的位置,材料位于面的背面。在正确描述的实体中,所有面的法向都是向外的,如下图所示:
Figure 2.2 In a correct solid body all face normals go outward
面上的材料是由边的朝向确定的。方向是由曲面不是面()的法向和边的微分的叉积确定。若边的朝向向前,则边的导数等于它的三维曲线的导数;若边的朝向反向,则边的导数与它的三维曲线的导数相反。也许考虑边的参数曲线会更易于理解:假如边是向前的,材料在它的左侧,假如是反向的,则材料在它的右侧。这让我想起了格林公式中对平面区域的边界曲线正向的规定:对平面区域D的边界曲线L,我们规定L的正向如下:当观察者沿L的这个方向行走时,D内在他附近处的那一部分总在他的左边。
Figure 2.3 Orientation of the edge
当用积分区域的概念来理解边的朝向时好像要容易些。把参数空间看作积分区域D,其中蓝色的边表示材料在参数曲线的右侧;红色的边表示材料在边的左侧。
2.3 容差 Tolerance
面的容差的几何意义是包围面的一个具有厚度的板。如下图所示:
Figure 2.4 Face Tolerance
与边和顶点的容差相比,建模算法中用到面的容差的情况相对要少。通常都使用默认值Precision::Confusion()。通常情况下,OpenCascade要求注意以下条件:
当边位于面上,顶点位于边上时,面的容差<=边的容差<=顶点的容差。
2.4 三角剖分 Triangulation
除了面的参数表示,为了面的显示,需要对面进行三角剖分,剖分得到的三角形也保存在面的数据结构中。当在着色渲染模式下时,可视化算法内部调用了BRepMesh::Mesh()来对每个面进行三角剖分,并将三角剖分得到的三角形加到面的数据结构中。
2.5 附加位置 Additional location
与边和顶点不同,面有附加位置信息(TopLoc_Location),它是面(BRep_TFace)的成员变量。所以,在使用底层曲面或三角剖分得到的三角形时,不要忘了将其考虑进去。
三、示例程序 Example Code
3.1 底层创建面并访问其数据 Creating a face bottom-up and accessing the data
与创建边和顶点一样,需要类BRep_Builder和Brep_Tool来从底层创建面和访问面中的数据。代码如下所示:
2 TopoDS_Face aFace;
3
4 aBuilder.MakeFace (aFace, aSurface, Precision::Confusion());
5
6
7
8 TopLoc_Location aLocation;
9 Handle(Geom_Surface) aSurf = BRep_Tool::Surface (aFace, aLocation);
10
11 gp_Pnt aPnt = aSurf -> Value (aU, aV).Transformed (aLocation.Transformation());
12
13 // or to transform a surface at once
14 // Handle(Geom_Surface) aSurf = BRep_Tool::Surface (aFace);
15 // gp_Pnt aPnt = aSurf->Value (aU, aV);
16 Handle(Poly_Triangulation) aTri = BRep_Tool::Triangulation (aFace, aLocation);
17
18 aPnt = aTri -> Nodes.Value (i).Transformed (aLocation.Transformation());
19
20
一定要考虑面的附加位置信息。
四、结论 Conclusion
面是边界表示法BRep中有几何数据的最后一个拓朴结构。为了面的显示,需要对其进行三角剖分,三角剖分后的数据也是保存在面的数据结构中。面还有附加位置数据需要考虑,若不考虑附加位置,剖分后的三角形都是相对于原点的。
从底层创建面和访问面的属性数据,与顶点和边一样,使用类BRep_Builder和类BRep_Tool来实现。
五、参考资料
1. Roman Lygin, OpenCascade notes, opencascade.blogspot.com
2. 孙家广等. 计算机图形学. 清华大学出版社
3. OpenCascade source code.
PDF Version: Topology and Geometry in OpenCascade-Face