一篇需要膜拜的文篇--Javascript异步编程模型进化(转)

简介: 要我能用得这么熟, 那前端出师了哈。 http://foio.github.io/javascript-asyn-pattern/ 改天一个一个亲测一下。 Javascript语言是单线程的,没有复杂的同步互斥;但是,这并没有限制它的使用范围;相反,借助于Node,Javascript已经在某些场景下具备通吃前后端的能力了。

要我能用得这么熟,

那前端出师了哈。

http://foio.github.io/javascript-asyn-pattern/

改天一个一个亲测一下。

Javascript语言是单线程的,没有复杂的同步互斥;但是,这并没有限制它的使用范围;相反,借助于Node,Javascript已经在某些场景下具备通吃前后端的能力了。近几年,多线程同步IO的模式已经在和单线程异步IO的模式的对决中败下阵来,Node也因此得名。接下来我们深入介绍一下Javascript的杀手锏,异步编程的发展历程。

让我们假设一个应用场景:一篇文章有10个章节,章节的数据是通过XHR异步请求的,章节必须按顺序显示。我们从这个问题出发,逐步探求从粗糙到优雅的解决方案。


1.回忆往昔之callback

在那个年代,javascript仅限于前端的简单事件处理,这是异步编程的最基本模式了。 比如监听dom事件,在dom事件发生时触发相应的回调。

element.addEventListener('click',function(){ //response to user click }); 

比如通过定时器执行异步任务。

setTimeout(function(){
    //do something 1s later }, 1000); 

但是这种模式注定无法处理复杂的业务逻辑的。假设有N个异步任务,每一个任务必须在上一个任务完成后触发,于是就有了如下的代码,这就产生了回调黑洞。

doAsyncJob1(function(){
    doAsyncJob2(function(){ doAsyncJob3(function(){ doAsyncJob4(function(){ //Black hole }); }) }); }); 

2.活在当下之promise

针对上文的回调黑洞问题,有人提出了开源的promise/A+规范,具体规范见如下地址:https://promisesaplus.com/。promise代表了一个异步操作的结果,其状态必须符合下面几个要求:

一个Promise必须处在其中之一的状态:pending, fulfilled 或 rejected.
如果是pending状态,则promise可以转换到fulfilled或rejected状态。
如果是fulfilled状态,则promise不能转换成任何其它状态。
如果是rejected状态,则promise不能转换成任何其它状态。

2.1 promise基本用法

promise有then方法,可以添加在异步操作到达fulfilled状态和rejected状态的处理函数。

promise.then(successHandler,failedHandler); 

而then方法同时也会返回一个promise对象,这样我们就可以链式处理了。

promise.then(successHandler,failedHandler).then().then(); 

MDN上的一张图,比较清晰的描述了Pomise各个状态之间的转换。

假设上文中的doAsyncJob都返回一个promise对象,那我们看看如何用promise处理回调黑洞:

doAsyncJob1().then(function(){ return doAsyncJob2();; }).then(function(){ return doAsyncJob3(); }).then(function(){ return doAsyncJob4(); }).then(//......); 

这种编程方式是不是清爽多了。我们最经常使用的jQuery已经实现了promise规范,在调用$.ajax时可以写成这样了:

var options = {type:'GET',url:'the-url-to-get-data'}; $.ajax(options).then(function(data){ //success handler },function(data){ //failed handler }); 

我们可以使用ES6的Promise的构造函数生成自己的promise对象,Promise构造函数的参数为一个函数,该函数接收两个函数(resolve,reject)作为参数,并在成功时调用resolve,失败时调用reject。如下代码生成一个拥有随机结果的promise。

var RandomPromiseJob = function(){ return new Promise(function(resolve,reject){ var res = Math.round(Math.random()*10)%2; setTimeout(function(){ if(res){ resolve(res); }else{ reject(res); } }, 1000) }); } RandomPromiseJob().then(function(data){ console.log('success'); },function(data){ console.log('failed'); }); 

jsfiddle演示地址:http://jsfiddle.net/panrq4t7/

promise错误处理也十分灵活,在promise构造函数中发生异常时,会自动设置promise的状态为rejected,从而触发相应的函数。

new Promise(function(resolve,reject){ resolve(JSON.parse('I am not json')); }).then(undefined,function(data){ console.log(data.message); }); 

其中then(undefined,function(data)可以简写为catch。

new Promise(function(resolve,reject){ resolve(JSON.parse('I am not json')); }).catch(function(data){ console.log(data.message); }); 

jsfiddle演示地址:http://jsfiddle.net/x696ysv2/

2.2 一个更复杂的例子

promise的功能绝不仅限于上文这种小打小闹的应用。对于篇头提到的一篇文章10个章节异步请求,顺序展示的问题,如果使用回调处理章节之间的依赖逻辑,显然会产生回调黑洞; 而使用promise模式,则代码形式优雅而且逻辑清晰。假设我们有一个包含10个章节内容的数组,并有一个返回promise对象的getChaper函数:

var chapterStrs = [
  'chapter1','chapter2','chapter3','chapter4','chapter5', 'chapter6','chapter7','chapter8','chapter9','chapter10', ]; var getChapter = function(chapterStr) { return get('<p>' + chapterStr + '</p>', Math.round(Math.random()*2)); }; 

下面我们探讨一下如何优雅高效的使用promise处理这个问题。

(1). 顺序promise

顺序promise主要是通过对promise的then方法的链式调用产生的。

//按顺序请求章节数据并展示
chapterStrs.reduce(function(sequence, chapterStr) { return sequence.then(function() { return getChapter(chapterStr); }).then(function(chapter) { addToPage(chapter); }); }, Promise.resolve()); 

这种方法有一个问题,XHR请求是串行的,没有充分利用浏览器的并行性。网络请求timeline和显示效果图如下:

 

查看jsfiddle演示代码: http://jsfiddle.net/81k9nv6x/1/

(2). 并发promise,一次性

Promise类有一个all方法,其接受一个promise数组:

Promise.all([promise1,promise2,...,promise10]).then(function(){ }); 

只有promise数组中的promise全部兑现,才会调用then方法。使用Promise.all,我们可以并发性的进行网络请求,并在所有请求返回后在集中进行数据展示。

//并发请求章节数据,一次性按顺序展示章节
Promise.all(chapterStrs.map(getChapter)).then(function(chapters){ chapters.forEach(function(chapter){ addToPage(chapter); }); }); 

这种方法也有一个问题,要等到所有数据加载完成后,才会一次性展示全部章节。效果图如下:

查看jsfiddle演示代码:http://jsfiddle.net/7ops845a/

(3). 并发promise,渐进式

其实,我们可以做到并发的请求数据,尽快展示满足顺序条件的章节:即前面的章节展示后就可以展示当前章节,而不用等待后续章节的网络请求。基本思路是:先创建一批并行的promise,然后通过链式调用then方法控制展示顺序。

chapterStrs.map(getChapter).reduce(function(sequence, chapterStrPromise) { return sequence.then(function(){ return chapterStrPromise; }).then(function(chapter){ addToPage(chapter); }); }, Promise.resolve()); 

效果如下:

 

查看jsfiddle演示代码:http://jsfiddle.net/fuog1ejg/

这三种模式基本上概括了使用Pormise控制并发的方式,你可以根据业务需求,确定各个任务之间的依赖关系,从而做出选择。

2.3 promise的实现

ES6中已经实现了promise规范,在新版的浏览器和node中我们可以放心使用了。对于ES5及其以下版本,我们可以借助第三方库实现,q(https://github.com/kriskowal/q)是一个非常优秀的实现,angular使用的就是它,你可以放心使用。下一篇文章准备实现一个自己的promise。


3.憧憬未来之generater

异步编程的一种解决方案叫做"协程"(coroutine),意思是多个线程互相协作,完成异步任务。随着ES6中对协程的支持,这种方案也逐渐进入人们的视野。Generator函数是协程在 ES6 的实现.

3.1 Generator三大基本特性

让我们先从三个方面了解generator。

(1) 控制权移交

在普通函数名前面加*号就可以生成generator函数,该函数返回一个指针,每一次调用next函数,就会移动该指针到下一个yield处,直到函数结尾。通过next函数就可以控制generator函数的执行。如下所示:

function *gen(){
    yield 'I'; yield 'love'; yield 'Javascript'; } var g = gen(); console.log(g.next().value); //I console.log(g.next().value); //love console.log(g.next().value); //Javascript 

next函数返回一个对象{value:'love',done:false},其中value表示yield返回值,done表示generator函数是否执行完成。这样写有点low?试试这种语法。

for(var v of gen()){ console.log(v); } 

(2) 分步数据传递

next()函数中可以传递参数,作为yield的返回值,传递到函数体内部。这里有点tricky,next参数作为上一次执行yeild的返回值。理解“上一次”很重要。

function* gen(x){ var y = yield x + 1; yield y + 2; return 1; } var g = gen(1); console.log(g.next()) // { value: 2, done: false } console.log(g.next(2)) // { value: 4, done: true } console.log(g.next()); //{ value: 1, done: true } 

比如这里的g.next(2),参数2为上一步yield x + 1 的返回值赋给y,从而我们就可以在接下来的代码中使用。这就是generator数据传递的基本方法了。

(3) 异常传递

通过generator函数返回的指针,我们可以向函数内部传递异常,这也使得异步任务的异常处理机制得到保证。

function* gen(x){ try { var y = yield x + 2; } catch (e){ console.log(e); } return y; } var g = gen(1); console.log(g.next()); //{ value: 3, done: false } g.throw('error'); //error 

3.2 用generator实现异步操作

仍然使用本文中的getChapter方法,该方法返回一个promise,我们看一下如何使用generator处理异步回调。gen方法在执行到yield指令时返回的result.value是promise对象,然后我们通过next方法将promise的结果返回到gen函数中,作为addToPage的参数。

function *gen(){
    var result = yield getChapter('I love Javascript'); addToPage(result); } var g = gen(); var result = g.next(); result.value.then(function(data){ g.next(data); }); 

gen函数的代码,和普通同步函数几乎没有区别,只是多了一条yield指令。

jsfiddle地址如下:http://jsfiddle.net/fhnc07rq/3/

3.3 使用co进行规范化异步操作

虽然gen函数本身非常干净,只需要一条yield指令即可实现异步操作。但是我却需要一堆代码,用于控制gen函数、向gen函数传递参数。有没有更规范的方式呢?其实只需要将这些操作进行封装,co库为我们做了这些(https://github.com/tj/co)。那么我们用generator和co实现上文的逐步加载10个章节数据的操作。

function *gen(){
    for(var i=0;i<chapterStrs.length;i++){ addToPage(yield getChapter(chapterStrs[i])); } } co(gen); 

jsfiddle演示地址:http://jsfiddle.net/0hvtL6e9/

这种方法的效果类似于上文中提到“顺序promise”,我们能不能实现上文的“并发promise,渐进式”呢?代码如下:

function *gen(){
  var charperPromises = chapterStrs.map(getChapter); for(var i=0;i<charperPromises.length;i++){ addToPage(yield charperPromises[i]); } } co(gen); 

jsfiddle演示地址: http://jsfiddle.net/gr6n3azz/1/

经历过复杂性才能达到简单性。我们从最开始的回调黑洞到最终的generator,越来越复杂也越来越简单。

===================

    function *gen() {
        yield 'I';
        yield 'love';
        yield 'Javascript';
    }
    
    var g = gen();
    console.log(g.next().value);
    console.log(g.next().value);
    console.log(g.next().value);
    
    function *gen1(x) {
        var y = yield x + 1;
        yield y + 2;
        return 1;
    }
    
    var g1 = gen1(3);
    console.log(g1.next());
    console.log(g1.next(10));
    console.log(g1.next());

目录
相关文章
|
17天前
|
缓存 JavaScript 前端开发
掌握现代JavaScript异步编程:Promises、Async/Await与性能优化
本文深入探讨了现代JavaScript异步编程的核心概念,包括Promises和Async/Await的使用方法、最佳实践及其在性能优化中的应用,通过实例讲解了如何高效地进行异步操作,提高代码质量和应用性能。
|
12天前
|
JavaScript 前端开发 开发者
探索Node.js中的异步编程之美
在数字世界的海洋中,Node.js如同一艘灵活的帆船,以其独特的异步编程模式引领着后端开发的方向。本文将带你领略异步编程的魅力,通过深入浅出的讲解和生动的代码示例,让你轻松驾驭Node.js的异步世界。
|
22天前
|
JavaScript API 开发者
深入理解Node.js中的事件循环和异步编程
【10月更文挑战第41天】本文将通过浅显易懂的语言,带领读者探索Node.js背后的核心机制之一——事件循环。我们将从一个简单的故事开始,逐步揭示事件循环的奥秘,并通过实际代码示例展示如何在Node.js中利用这一特性进行高效的异步编程。无论你是初学者还是有经验的开发者,这篇文章都能让你对Node.js有更深刻的认识。
|
23天前
|
前端开发 JavaScript UED
探索JavaScript的异步编程模式
【10月更文挑战第40天】在JavaScript的世界里,异步编程是一道不可或缺的风景线。它允许我们在等待慢速操作(如网络请求)完成时继续执行其他任务,极大地提高了程序的性能和用户体验。本文将深入浅出地探讨Promise、async/await等异步编程技术,通过生动的比喻和实际代码示例,带你领略JavaScript异步编程的魅力所在。
21 1
|
1月前
|
前端开发 JavaScript 开发者
除了 async/await 关键字,还有哪些方式可以在 JavaScript 中实现异步编程?
【10月更文挑战第30天】这些异步编程方式在不同的场景和需求下各有优劣,开发者可以根据具体的项目情况选择合适的方式来实现异步编程,以达到高效、可读和易于维护的代码效果。
|
1月前
|
前端开发 JavaScript 开发者
深入理解JavaScript异步编程
【10月更文挑战第29天】 本文将探讨JavaScript中的异步编程,包括回调函数、Promise和async/await的使用。通过实例代码和解释,帮助读者更好地理解和应用这些技术。
28 3
|
1月前
|
前端开发 JavaScript 开发者
除了 Generator 函数,还有哪些 JavaScript 异步编程解决方案?
【10月更文挑战第30天】开发者可以根据具体的项目情况选择合适的方式来处理异步操作,以实现高效、可读和易于维护的代码。
|
17天前
|
前端开发 JavaScript
深入理解 JavaScript 的异步编程
深入理解 JavaScript 的异步编程
23 0
|
2月前
|
前端开发 JavaScript UED
探索JavaScript中的异步编程模式
【10月更文挑战第21天】在数字时代的浪潮中,JavaScript作为一门动态的、解释型的编程语言,以其卓越的灵活性和强大的功能在Web开发领域扮演着举足轻重的角色。本篇文章旨在深入探讨JavaScript中的异步编程模式,揭示其背后的原理和实践方法。通过分析回调函数、Promise对象以及async/await语法糖等关键技术点,我们将一同揭开JavaScript异步编程的神秘面纱,领略其带来的非阻塞I/O操作的魅力。让我们跟随代码的步伐,开启一场关于时间、性能与用户体验的奇妙之旅。
|
25天前
|
JavaScript 前端开发
深入理解Node.js中的异步编程模型
【10月更文挑战第39天】在Node.js的世界里,异步编程是核心所在,它如同自然界的水流,悄无声息却又无处不在。本文将带你探索Node.js中异步编程的概念、实践以及如何优雅地处理它,让你的代码像大自然的流水一样顺畅和高效。