开发者社区> 反向一觉> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

测试分布式系统的线性一致性

简介: 2017年架构师最重要的48个小时 | 8折倒计时 最近看到一篇文章 ,写得非常好,在征得作者 Anish 同意的情况下,决定将其翻译成中文。但为了更好理解,一些地方并不会逐字翻译,也会稍作调整。 正确实现一个分布式系统是非常有挑战的一件事情,因为需要很好的处理并发和失败这些问题。
+关注继续查看

2017年架构师最重要的48个小时 | 8折倒计时

最近看到一篇文章 ,写得非常好,在征得作者 Anish 同意的情况下,决定将其翻译成中文。但为了更好理解,一些地方并不会逐字翻译,也会稍作调整。

测试分布式系统的线性一致性

正确实现一个分布式系统是非常有挑战的一件事情,因为需要很好的处理并发和失败这些问题。网络包可能被延迟,重复,乱序或者丢弃,机器可能在任何时候宕机。即使一些设计被论文证明是正确的,也仍然很难再实现中避免 bug。

除非我们使用形式方法,不然,即使我们假设实现是正确的,我们也需要去测试系统。测试分布式系统也是一件非常有挑战的事情。并发和不确定性使得我们在测试的时候非常难抓住 bug,尤其是在一些极端情况下面才会出现的 bug,譬如同时机器宕机或者极端网络延迟。

正确性

在讨论测试分布式系统的正确性之前,我们首先定义下什么是 “正确性”。即使对于一些简单的系统,要完全的确定系统符合预期也是一件相当复杂的事情。

考虑一个简单的 key-value 系统,譬如 etcd,支持两个操作:Put(key, value) 和 Get(key),首先,我们需要考虑它在顺序情况下面的行为。

顺序规范

通常对于一个 key-value store,我们对于它在顺序操作下面的行为都能有一个直观的认识:Get 操作如果在 Put 的后面,那么一定能得到 Put 的结果。譬如,如果 Put("x", "y") ,那么后面的 Get("x") 就能得到 "y",如果得到了 "z",那么这就是不对的。

我们使用 Python 定义一个简单的 key-value store:

使用 Python 定义一个简单的 key-value store

上面的代码比较简单,但包含了足够的信息,包括初始状态是怎样的,内部状态是如何被操作的结果改变的,从 key-value store 里面操作返回的结果是怎样的。这里需要留意下 Get() 对于不存在的 key 的处理,会返回一个 empty string。

线性一致性

接下来,我们来考虑我们的 key-value store 在并发下面会有怎样的行为。需要注意顺序规范并没有指明在并发操作下面会发生什么。譬如,顺序规范并没有说 key-value store 在下面这个场景下可以允许的操作。

我们并不能立刻知道 Get("x") 这个操作会允许返回怎样的结果。直觉上,我们可以说 Get("x")是跟 Put("x", "y") 和 Put("x", "z") 一起执行的,所以它能可能返回一个值,甚至也可能返回 ""。 如果有另一个 Get("x") 的操作在更后面执行,我们可以说这个一定能返回 "z",因为它是最后一次写入的值,而且那个时候并没有其他的并发写入。

对于一个基于顺序规范的并发操作来说,我们会用一个一致性模型,也就是线性一致性来说明它的正确性。在一个线性一致性的系统里面,任何操作都可能在调用或者返回之间原子和瞬间执行。除了线性一致性,还有一些其他一致性的模型,但多数分布式系统都提供了线性一致性的操作:线性一致性是一个强的一致性模型,并且基于线性一致性系统,很容易去构建其他的系统。考虑到如下对 key-value store 操作的历史例子:

对 key-value store 操作的历史例子

这个历史是一个线性的。在下面图片的蓝色地方,我们现实的标明了线性一致的点。这个顺序历史 Put("x", "0"), Get("x") -> "0", Put("x", "1"), Get("x") -> "1",对于顺序规范来说就是一个正确的历史。

对应的,下面的历史就不是线性一致的。

对于顺序规范来说,这个历史并不是线性一致的:我们并不能在这个历史的操作里面指定出线性一致的点。我们可以画出 client 1,2 和 3 的,但我们并不能画出 client 4 的,因为这明显是一个过期的值。类似的,我们可以画出 client 1,2 和 4 的,那么 client 2 的操作一定会在 4 的操作开始的后面,但这样我们就不能处理 client 3,它只可能合法的返回 "" 或者 "0"。

测试

有了一个正确性的定义,我们就可以考虑如何去测试分布式系统了。通常的做法就是对于正确的操作,不停的进行随机的错误注入,类似机器宕机,网络隔离等。我们甚至能模拟整个网络,这样我们就能做长时间的网络延迟等。因为测试时随机的,我们需要跑很多次从而确定一个系统的实现是正确的。

专门测试

我们实际如何做正确操作的测试呢?在最简单的软件里面,我们可以使用输入输出测试,譬如 assert(expected_output == f(input)),我们也可以在分布式系统上面使用一个类似的方法,譬如,对于 key-value store,当多个 client 开始执行操作的时候,我们可以有如下的测试:

如果测试挂掉了,那么这个系统一定不是线性一致性的,当然,这个测试并不是很完备,因为有可能不是线性一致的系统也可能通过这个测试。

线性一致性

一个更好的办法就是并发的客户端完全跑随机的操作。譬如,循环的去调用 kvstore.put(rand(), rand()) 和 kvstore.get(rand()),有可能会只用很少的 key 去增大冲突的概率。但在这种情况下,我们如何定义什么是正确的操作呢?在上面的简单的测试里面,因为每个 client 都操作的是一个独立的 key,所以我们可以非常明确的知道输出结果。

但是 clients 并发的操作同一堆 keys,事情就变得复杂了。我们并不能预知每个操作的返回值因为这并没样一个唯一的答案。但我们可以用另一个办法:我们可以记录整个操作的历史,然后去验证这个操作历史是线性一致的。

线性一致性验证

一个线性一致性验证器会使用一个顺序规范和一个并发操作的历史,然后执行一个判定程序去检查这个历史在规范下面是否线性一致。

NP 完备

但不幸的是,线性一致性验证是 NP 完备的。这个证明非常简单:我们能说明线性一致性验证是 NP 问题,并且也能展示一个 NP 困难问题能被简化成线性一致性验证。明显的,线性一致性验证是 NP 问题,譬如,所有操作的线性一致性点,根据相关的顺序规范,我们可以在多项式时间里验证。

为了说明线性一致性验证是 NP 困难的,我们可以将子集合问题简化成线性一致性验证。对于子集合问题,我们给出非负数的集合 S={s1,s2,…,sn} 和目标结果 t,然后我们必须确定是否存在一个子集 S 的合等于 t。我们可以将这个问题简化成如下的线性一致性验证。考虑顺序规范:

以及历史:

只有在子集合问题的答案是 “yes” 的时候,历史才是线性的。如果历史是线性的,那么我们认为对于任何的 Add(s_i) 操作,在 Get() 操作之前都有线性一致性点,这个就对应了在子集里面 Si,它的合是 t。如果这个集合里面有一个子集的合是 t,我们就能构造一个线性化,它有在 Get 操作发生之前,对应子集 Si 的 Add(s_i) 的操作,也有在 Get() 操作之后其余的操作。

PS:这个章节我大概知道啥意思,但没找到更好的表述来翻译,也就凑合着了。后面再看 paper 来深入了解吧。

实现

即使线性一致性验证是 NP 完全的,在实际中,它仍然能在一些小的历史上面很好的工作。线性一致性验证器的实现会用一个可执行的规范,加上一个历史,执行一个搜索过程去构造一个线性化,并使用一些技巧来限制减少搜索的空间。

在 Jepsen 里面,有一个一致性验证工具 Knossos,但不幸的是,在测试一些分布式 key-value store 的时候,Knossos 并不能很好的工作,它可能只能适用于一些少的并发 clients,以及只有几百的事件的历史。但在一些测试里面,有很多的 clients,以及会生成更多的历史事件。为了解决 Knossos 的问题,作者开发了 Procupine,一个用 Go 写的更快的线性一致性验证工具。Porcupine 使用一个用 Go 开发的执行规范去验证历史是否是线性的。根据实际测试的情况,Porcupine 比 Knossos 快很多倍。

效果

在测试分布式系统的线性一致性的时候,使用错误注入是一个很有效的手段。

作为对比,在使用专门的测试用 Porcupine 测试 key-value store 的时候,作者使用了这两种方式。作者在实现它自己的 key-value store 的时候引入不同的设计错误,譬如在修改之后会出现过期读,来看这些测试是否会挂掉。专门测试会捕捉到很多 bugs,但并没有能力去捕捉到更多的狡猾的 bugs。相对而言,作者现在还没找到一个正确性的 bug 是线性一致性测试不能抓住的。

  1. 形式方法能够保证一个分布式系统的正确性。例如,UM PLSE 研究小组最近使用 Coq proof assistnt 来验证了 Raft 一致性协议。但不幸的的是,验证需要特定的知识,另外验证实际的系统需要做大量的工作。没准有一天,验证能被用在实际系统上面,但现在,主要还是测试,而不是验证。
  2. 理论上,所有的生产系统都会有一个形式规范,而且一些系统也已经有了,譬如 Raft 就有一个用 TLA+ 写的形式规范。但不幸的是,大部分的系统是没有的。                                                                                                         




本文作者:PingCAP
来源:51CTO

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【分布式】一致性协议
继续前面的学习,这篇我们来学习在分布式系统中最重要的一块,一致性协议,其中就包括了大名鼎鼎的Paxos算法。
40 0
分布式系统链路一致性踩坑录
本文把问题聚焦在一个用户请求从入口开始在分布式系统这个链路上如何调用来保证一致。
79 0
分布式系统的一致性协议之 2PC 和 3PC
在分布式系统领域,有一个理论,对于分布式系统的设计影响非常大,那就是 CAP 理论,即对于一个分布式系统而言,它是无法同时满足 Consistency(强一致性)、Availability(可用性) 和 Partition tolerance(分区容忍性) 这三个条件的,最多只能满足其中两个。
1885 0
分布式存储系统的一致性是什么?
(本文内容仅代表作者个人观点,不代表OceanBase官方。) 在分布式存储系统(包括OceanBase这样的分布式数据库)的使用中,我们经常会提到“一致性”这个词,但是这个术语1在不同的系统、不同人的心目中有不同的内涵,很容易造成混淆。 想象一个最简单的存储系统,只有一个客户端(单进程)和一个服务端(单进程服务)。客户端顺序发起读写操作,服务端也顺序处理每个请求,那么无论从服务器视角
3210 0
一个分布式测试系统利器
Create an EC2 instance Sign up for AWS In Services -> EC2, click “Launch Instance” Choose the 64 bit Debian Jessie image ...
1611 0
《彻底解决分布式系统一致性问题》学习笔记
《彻底解决分布式系统一致性问题》直播者:李艳鹏 笔记作者:JKXQJ 一致性问题产生的背景 JEE架构:WEB容器—组合业务逻辑—>EJB容器—数据存ORM—>数据库 SSH架构:Struts MVC—组合...
1216 0
分布式事务及分布式系统一致性解决方案
在分布式系统中,同时满足“一致性”、“可用性”和“分区容错性”三者是不可能的。分布式系统的事务一致性是一个技术难题,各种解决方案孰优孰劣? 在OLTP系统领域,我们在很多业务场景下都会面临事务一致性方面的需求,例如最经典的Bob给Smith转账的案例。
1466 0
+关注
757
文章
549
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载