Parallel Collision Detection

简介:
First, a short note on the structure of our collision detection program. An overview of the processing pipeline is given in Figure  1 . We assume that before entering the pipeline a scene has been loaded containing some objects. In our implementation, these are LightWave objects listed in a little script. We also use this script to set several switches that determine the operating mode. The object-object weakness strategy is the Sweep and Prune (S&P) algorithm as presented previously. For the face level intersection tests we have the following algorithms: Axis Aligned Bounding Box trees (AABB), Oriented Bounding Box trees with or without computation of the convex hull in the box orientation calculation (OBB and OBBCV) and lastly the V-Clip algorithm ([ Mir98 ]) which I didn't mention before and won't say anything about since it wasn't parallelized. As you can see from Figure  1 , you can skip the S&P steps, since in Slave Mode this step will be done by the Master. It's also possible that in a particular application the scenes are so dense that the S&P check can't deliver a speed increase and is best switched off. Also, the face-level detection can be passed on to slaves, which is of particular interest in this paper. 
   
Figure 1: The collision detection pipeline
\begin{figure}
\begin{center}

\includegraphics [width=12cm] {pipeline.eps}
\end{center}\end{figure}

For our implementation, we used the Parallel Virtual Machine library, a library that allows a network of computers to be used as a single parallel machine. Later on, we will discuss what exactly the Parallel Virtual Machine (PVM) library offers. But first we'll have to temper expectations a bit. 
目录
相关文章
|
5月前
|
算法 数据挖掘
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency,大panel二代测序的一致性和重复性:对具有错配修复和校对缺陷的参考物质进行体细胞突变检测的多实验室评估
48 6
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
|
机器学习/深度学习 自然语言处理 算法
ACL 2022:Graph Pre-training for AMR Parsing and Generation
抽象语义表示(AMR)以图形结构突出文本的核心语义信息。最近,预训练语言模型(PLM)分别具有AMR解析和AMR到文本生成的高级任务。
177 0
|
人工智能 编解码 自然语言处理
论文解读:Inpaint Anything: Segment Anything Meets Image Inpainting
论文解读:Inpaint Anything: Segment Anything Meets Image Inpainting
473 0
|
资源调度 算法
论文阅读之 DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation
DECOLOR: Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation Xiaowei Zhou et al.
|
9月前
|
算法 光互联 计算机视觉
Locally Adaptive Color Correction for Underwater Image Dehazing and Matching
该文提出了一种新颖的水下图像处理方法,结合颜色转移和局部调整来校正颜色,以应对水下光照和散射造成的图像退化。传统颜色转移方法基于全局参数,不适应水下场景中颜色变化的局部性质。文章中,作者通过融合策略,利用光衰减水平估计来实现局部颜色校正。首先,通过暗通道先验恢复彩色补偿图像,然后估计光衰减图。接着,创建一个合成图像,该图像的统计特性代表高衰减区域,用于颜色转移。最后,通过加权融合初始图像和颜色转移图像,生成最终的颜色校正图像。这种方法旨在提高水下图像的对比度和颜色准确性,特别关注高衰减区域。
105 1
|
机器学习/深度学习
论文笔记之: Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
 Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function  CVPR 2016      摘要:跨摄像机的行人再识别仍然是一个具有挑战的问题,特别是摄像机之间没有重叠的观测区域。
|
机器学习/深度学习 算法 图形学
Deep learning based multi-scale channel compression feature surface defect detection system
简述:首先应用背景分割和模板匹配技术来定义覆盖目标工件的ROI区域。提取的感兴趣区域被均匀地裁剪成若干个图像块,每个块被送到基于CNN的模型,以分类杂乱背景中不同大小的表面缺陷。最后,对空间上相邻且具有相同类别标签的图像块进行合并,以生成各种表面缺陷的识别图。
170 0

热门文章

最新文章