大数据就是一门工具,解决业务问题才是王道

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

尽管,大数据可以为企业的管理带来变革,也可以带来思想和文化上的变革。然而,所有的变革依然要转化或者依赖于最为基础的应用和操作。

所以,大数据首先就是一门工具,用来发现业务规律和探知业务问题的工具。

首先,

大数据可以发现业务规律和特征。

任何客观事物,包括企业的运营管理及市场行为,都会留下“数据”足迹。而对数据的分析和理解,就能够把握业务的特征及规律。

简单地,如下所示,我收集产品销售的数据记录,然后按照时间维度(按周)对产品销量进行统计,可视化化后得到如下所示的折线图。

大数据就是一门工具,解决业务问题才是王道

我相信绝大多数人都能够看明白这个图,但你看到这个图后能想到些什么呢?如何实现从数据到业务决策呢?这,却是个大数据思维的问题。

1、先看数据特征:

从数据的特征可以看出,周末的产品销量比较高,这是绝大多数零售店的销售规律,即“周末是交易高峰时间”。然而,绝大多数人就只停留在这个理解上,鲜有人会进行进一步的思考。

2、再到业务特征:

我们知道,数据的特征就是业务的特征,当你从业务上来理解这些数据特征的时候,就上升到了业务特征,可以发现“周末的客流量比较高”这样的业务特征。

3、提出业务决策:

当你理解了业务特征后,再提出业务策略就容易了。根据上面的分析,你至少可以提出如下的业务建议或策略:在人力安排上,周末需要更多的销售员工上班;在库存管理上,在周五晚上就需要检查库存是否足够,确保周末有足够的产品售卖;在营销活动的时间安排上,要想达到更好的品牌宣传或者营销效果,就得选择在客流量多的周末时间,等等。

其次,

大数据可以发现业务的变化。

谷歌的GFT(流感趋势预测)产品,可以说是比较早的一个大数据产品了。

1、数据的规律:

谷歌搜索引擎每天要处理近30亿次的搜索关键词,其中,搜索感冒(流感)相关的词的数量及人数是完全可以识别并且统计出来的,在正常情况下,某区域内每天搜索跟流感相关的人数是有一定的波动的,但这个波动也应该是有规律的。

2、数据的异常:

但是,当有一段时间,某地搜索流感相关词的人数突然变多了,这极有可能说明当地患感冒的人数有可能增多了。

3、业务的变化:

当发现连续几天搜索人数都偏多,这个时候一定说明业务发生了变化。因此,可以据此做出判断“当地极有可能爆发流感”。

所以,可以基于数据的变化,而探知业务的变化,从而可以进一步思考给出相应的业务策略和业务建议。

一句话:数据的变化就意味着业务的变化。

大数据就是一门工具,解决业务问题才是王道

下图是百度的疾病预测的可视化结果,圆圈越大表示当地搜索相关疾病的人数也越多(即搜索人数偏离平均搜索人数的大小),说明当地患某种疾病的指数也就越高。这,也是利用了数据的变化来探知业务的变化。

大数据就是一门工具,解决业务问题才是王道

  第三,

大数据可以发现业务的关联性。

正如舍恩伯格在《大数据时代》这本书所说,大数据是关注相关性,即“万物皆有连”。也就是业务的发展及变化是离不多影响它的因素的。

美国印第安纳大学的一个教授,收集了Twitter上近亿的条文,进行文本分析,并试图对作者的情绪进行量化,经过众多的优化,最终得到了社交网络上的客户群的情绪指数,并按时间作出了情绪曲线。当他将情绪曲线与道琼斯指数曲线进行比较时,他惊奇地发现,当把情绪曲线往后移动3-4天后,情绪曲线就与道琼斯曲线有着惊人的一致,这意味着股民的情绪对于股票是有着重要的影响的,于是他宣称找到了影响股票市场的关键影响因素,那就是股民的情绪!

大数据就是一门工具,解决业务问题才是王道

一句话:股民的情绪与股票指数是具有相关性。所以,从数据的相关性,可以判断出影响业务的关键因素。

相关性的分析,在大数据领域经常用来做影响因素分析。比如:影响产品销量的关键因素有哪些?影响员工离职的关键因素有哪些?

可见,用大数据来进行业务决策,不外乎就是通过对数据的分析,来实现对业务特征、业务规律、业务变化的把握,以及影响业务变化的关键因素进行分析,来达到了解业务,预测业务未来发展的目的。

所以,大数据分析的核心,就是去发现数据的特征、变化和关系。因为数据的特征就是业务的特征,数据的变化就是业务的变化,数据间的关系就是业务因素间的关系。


本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
SQL 分布式计算 数据可视化
Tableau与大数据:可视化工具在大数据分析中的应用
【4月更文挑战第8天】Tableau是一款领先的数据可视化工具,擅长于大数据分析,提供广泛的数据连接器,支持多源整合。它与Hadoop、Spark等深度集成,实现高效大数据处理。Tableau的拖拽式界面和交互式分析功能使得非技术人员也能轻松探索数据。在实战中,Tableau用于业务监控、数据storytelling和自助式分析,推动数据民主化,提升决策效率。未来,Tableau将持续创新,扩展生态系统,并保障数据安全与合规性,助力企业最大化数据价值。
378 0
|
7月前
|
SQL 分布式计算 监控
MaxCompute提供了一些工具以帮助您监控作业和资源使用情况。
【2月更文挑战第4天】MaxCompute提供了一些工具以帮助您监控作业和资源使用情况。
82 8
|
2月前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
125 4
|
4月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
136 0
|
27天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
2月前
|
存储 分布式计算 大数据
大数据的工具都有哪些?
【10月更文挑战第9天】大数据的工具都有哪些?
84 1
|
3月前
|
存储 分布式计算 Hadoop
大数据分析的工具
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。
44 8
|
2月前
|
分布式计算 Hadoop 数据挖掘
6个常用大数据分析工具集锦
6个常用大数据分析工具集锦
57 0
|
3月前
|
分布式计算 Hadoop 大数据
28个大数据的高级工具汇总
文章汇总了28种大数据高级工具,并对Hadoop、Spark、Storm等关键技术进行了详细介绍,同时还提供了获取大数据集的多个资源链接。
72 0
|
6月前
|
存储 分布式计算 Hadoop
Spark和Hadoop都是大数据处理领域的重要工具
【6月更文挑战第17天】Spark和Hadoop都是大数据处理领域的重要工具
180 59