《中国人工智能学会通讯》——3.22 基于时间序列建模的预测方法

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第3章,第3.22节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

3.22 基于时间序列建模的预测方法

基于时间序列建模的预测方法主要关注用户生成内容传播过程对应的时间序列。这类方法在对时间序列建模后,利用所得的模型进行用户生成内容的流行度预测工作。

下面介绍其中一些典型的研究工作。Crane 等[22]通 过 分 析 Youtube 中 500 万 段视频的传播过程对应的时间序列发现,大部分 ( 约90%) 视频的传播过程可以用泊松过程精确刻画,剩余视频的传播过程在经历流行度的爆发 (burst)之后,其单位时间内增加的流行度服从幂律分布的衰减。Yang 等[23]研究了用户生成内容流行度随时间的消涨模式。该研究通过对 5.8 亿条推文和 1.7亿篇博客文章流行度随时间消涨模式的聚类分析,挖掘出六类形态各异的流行度时序模式。进一步,Matsubara 等[24]提出了 SpikeM 模型对上述六种时序模式进行拟合,并利用 SpikeM 模型进行流行度预测。SpikeM 模型中利用幂律分布,描述用户生成内容的传播能力随时间衰减的过程,并利用正弦方程描述了用户关注度随时间周期变化的过程。Ahmed 等[25-28]先对用户生成内容初期传播过程的时序模式进行分类,之后利用分类后所得时序模式信息进行流行度预测。Lerman 等[29]在建模 Digg中消息获得投票的过程中,考虑了消息的兴趣度和可见度,进一步利用所得模型进行消息最终获得票数的预测。Wang 等[30]利用增强泊松过程模型,对论文获得引用的过程进行建模。该模型建模了论文的适应力、论文新颖性随着时间的衰减和论文引用过程中的优先连接机制。其中,论文的适应力表示为常数;论文新颖性的衰减服从对数正态分布;优先连接机制表示为引用次数的线性方程。Shen等[31]在上述模型的基础上增加了共轭先验,以消除模型对训练数据过拟合的现象。改进的模型中论文的适应力不再是常数,而是服从伽马分布。改进后的模型提高了论文引用次数预测工作的精度。同样,Gao等[32]在上述模型的基础上,提出了一种基于增强泊松过程的微博消息流行度预测模型。该模型从建模微博消息转发过程对应时间序列的角度,研究了流行度预测问题,并引入微博时间的概念并设计时间映射过程。

相关文章
|
人工智能 搜索推荐
写歌词的技巧和方法:塑造完美歌词结构的艺术,妙笔生词AI智能写歌词软件
歌词是音乐的灵魂,其结构艺术至关重要。开头需引人入胜,主体部分无论是叙事还是抒情,都应层次分明、情感丰富,结尾则需升华或留白,给人以深刻印象。《妙笔生词智能写歌词软件》提供多种AI辅助功能,助你轻松创作完美歌词,成为音乐创作的得力助手。
|
1月前
|
人工智能 自然语言处理 物联网
GEO优化方法有哪些?2025企业抢占AI流量必看指南
AI的不断重塑传统的信息入口之际,用户的搜索行为也从单一的百度、抖音的简单的查找答案的模式,逐渐转向了对DeepSeek、豆包、文心一言等一系列的AI对话平台的更加深入的探索和体验。DeepSeek的不断迭代优化同时,目前其月活跃的用户已破1.6亿,全网的AI用户规模也已超过6亿,这无疑为其下一阶段的迅猛发展提供了坚实的基础和广泛的市场空间。
|
6月前
|
机器学习/深度学习 人工智能 算法
智创 AI 新视界 -- 提升 AI 推理速度的高级方法(16 - 2)
本文深度聚焦提升 AI 推理速度,全面阐述模型压缩(低秩分解、参数量化)、硬件加速(GPU、TPU)及推理算法优化(剪枝感知推理、动态批处理)。结合图像识别等多领域案例与丰富代码示例,以生动形象且专业严谨的方式,为 AI 从业者提供极具价值的技术指南,助力突破 AI 推理速度瓶颈,实现系统性能跃升。
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
380 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
658 8
|
2月前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
232 4
|
3月前
|
人工智能 JSON 监控
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
AI Agent的评估需覆盖其整个生命周期,从开发到部署,综合考量事实准确性、推理路径、工具选择、结构化输出、多轮对话及实时性能等维度。LangSmith作为主流评估平台,提供了一套全面的评估框架,支持12种评估技术,包括基于标准答案、程序性分析及观察性评估。这些技术可有效监控Agent各组件表现,确保其在真实场景中的稳定性和可靠性。
1720 0
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。

热门文章

最新文章