《Web安全之机器学习入门》一 3.4 效果验证

简介: 本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第3章,第3.4节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4 效果验证

效果验证是机器学习非常重要的一个环节,最常使用的是交叉验证。常见的验证过程如图3-15所示。以SVM为例,导入SVM库以及Scikit-Learn自带的样本库datasets:

>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets
>>> from sklearn import svm

获取样本数据:

>>> iris = datasets.load_iris()
>>> iris.data.shape, iris.target.shape
((150, 4), (150,))

为了保证效果,使用函数train_test_spli随机分割样本为训练样本和测试样本:

>>> X_train, X_test, y_train, y_test = train_test_split(
...     iris.data, iris.target, test_size=0.4, random_state=0)
>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

调用SVM进行训练:

>>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

判断预测结果与测试样本标记的结果,得到准确率:

>>> clf.score(X_test, y_test)
0.96...

screenshot

为了提高验证的准确度,比较常见的方法是使用K折交叉验证。所谓K折交叉验证,就是初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其他结合方式,最终得到一个单一估测。三折交叉验证原理图见图3-16。这个方法的优势在于,同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次,十折交叉验证是最常用的。还是上面的例子,十折交叉验证实现如下:

>>> from sklearn.model_selection import cross_val_score
>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_val_score(clf, iris.data, iris.target, cv=5)
>>> scores
array([ 0.96...,  1.  ...,  0.96...,  0.96...,  1.        ])

screenshot

相关文章
|
1月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
84 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
27天前
|
缓存 安全 搜索推荐
阿里云先知安全沙龙(北京站) ——浅谈Web快速打点
信息收集是网络安全中的重要环节,常用工具如Hunter、Fofa和扫描工具可帮助全面了解目标系统的网络结构与潜在漏洞。遇到默认Nginx或Tomcat 404页面时,可通过扫路径、域名模糊测试、搜索引擎缓存等手段获取更多信息。AllIN工具(GitHub: P1-Team/AllIN)能高效扫描网站路径,发现敏感信息。漏洞利用则需充分准备,以应对突发情况,确保快速拿下目标站点。 简介:信息收集与漏洞利用是网络安全的两大关键步骤。通过多种工具和技术手段,安全人员可以全面了解目标系统,发现潜在漏洞,并制定有效的防御和攻击策略。
|
1月前
|
Java 开发者 微服务
Spring Boot 入门:简化 Java Web 开发的强大工具
Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级别的基于Spring框架的应用程序。它旨在简化Spring应用的初始搭建以及开发过程。
83 6
Spring Boot 入门:简化 Java Web 开发的强大工具
|
1月前
|
安全 应用服务中间件 网络安全
实战经验分享:利用免费SSL证书构建安全可靠的Web应用
本文分享了利用免费SSL证书构建安全Web应用的实战经验,涵盖选择合适的证书颁发机构、申请与获取证书、配置Web服务器、优化安全性及实际案例。帮助开发者提升应用安全性,增强用户信任。
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
55 2
|
2月前
|
SQL 负载均衡 安全
安全至上:Web应用防火墙技术深度剖析与实战
【10月更文挑战第29天】在数字化时代,Web应用防火墙(WAF)成为保护Web应用免受攻击的关键技术。本文深入解析WAF的工作原理和核心组件,如Envoy和Coraza,并提供实战指南,涵盖动态加载规则、集成威胁情报、高可用性配置等内容,帮助开发者和安全专家构建更安全的Web环境。
94 1
|
2月前
|
安全 前端开发 Java
Web安全进阶:XSS与CSRF攻击防御策略深度解析
【10月更文挑战第26天】Web安全是现代软件开发的重要领域,本文深入探讨了XSS和CSRF两种常见攻击的原理及防御策略。针对XSS,介绍了输入验证与转义、使用CSP、WAF、HTTP-only Cookie和代码审查等方法。对于CSRF,提出了启用CSRF保护、设置CSRF Token、使用HTTPS、二次验证和用户教育等措施。通过这些策略,开发者可以构建更安全的Web应用。
120 4
|
2月前
|
安全 Go PHP
Web安全进阶:XSS与CSRF攻击防御策略深度解析
【10月更文挑战第27天】本文深入解析了Web安全中的XSS和CSRF攻击防御策略。针对XSS,介绍了输入验证与净化、内容安全策略(CSP)和HTTP头部安全配置;针对CSRF,提出了使用CSRF令牌、验证HTTP请求头、限制同源策略和双重提交Cookie等方法,帮助开发者有效保护网站和用户数据安全。
102 2
|
2月前
|
存储 安全 Go
Web安全基础:防范XSS与CSRF攻击的方法
【10月更文挑战第25天】Web安全是互联网应用开发中的重要环节。本文通过具体案例分析了跨站脚本攻击(XSS)和跨站请求伪造(CSRF)的原理及防范方法,包括服务器端数据过滤、使用Content Security Policy (CSP)、添加CSRF令牌等措施,帮助开发者构建更安全的Web应用。
136 3