《大数据分析原理与实践》——小结

简介: 本节书摘来自华章计算机《大数据分析原理与实践》一书中的第2章,小结,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

小结

本章介绍了大数据分析模型的基本概念。2.1节让读者对于大数据分析模型有了更加清晰的认识,介绍了大数据分析模型的建立方法,以及影响大数据分析效果的众多因素。只有针对实际问题,把握住影响实际问题的关键因素,才能得到让人满意的模型。2.2节介绍了基本统计量,包括全表统计量和皮尔森相关系数。在全表统计量中,根据反映出的数据特征类型可以将基本统计量分为两类:反映数据集中趋势的和反映数据波动大小的。能够反映数据集中趋势的度量包括均值、中位数和众数;能够反映数据散布情况的数据波动大小度量包括极差和方差。皮尔森相关系数是关联关系分析问题中常用的而且很重要的统计量。2.3节讲述了推断统计的基本知识,包括参数估计和假设检验。在参数估计部分,首先介绍了点估计,主要有矩估计和极大似然估计两种;接着探讨了估计量的评价标准,包括3条:无偏性、有效性、相合性(一致性)。对于区间估计,本章给出了单个正态总体参数的区间估计和两个正态总体参数的区间估计。在假设检验部分,给出了假设检验的定义和操作步骤,并给出了t检验和u检验的区别。最后,针对t检验的三种形式(单样本t检验、两个独立样本均数t检验和配对样本均数t检验)做了详细的介绍。

相关文章
|
6月前
|
机器学习/深度学习 数据采集 算法
大数据分析技术与方法探究
在当今信息化时代,数据量的增长速度远快于人类的处理能力。因此,如何高效地利用大数据,成为了企业和机构关注的焦点。本文将从大数据分析的技术和方法两个方面进行探究,为各行业提供更好的数据应用方向。
|
6月前
|
存储 机器学习/深度学习 数据采集
大数据处理与分析实战:技术深度剖析与案例分享
【5月更文挑战第2天】本文探讨了大数据处理与分析的关键环节,包括数据采集、预处理、存储、分析和可视化,并介绍了Hadoop、Spark和机器学习等核心技术。通过电商推荐系统和智慧城市交通管理的实战案例,展示了大数据在提高用户体验和解决实际问题上的效能。随着技术进步,大数据处理与分析将在更多领域发挥作用,推动社会进步。
|
Java 大数据 Linux
学习大数据分析需要什么基础?
顾名思义,大数据就是巨量数据,海量数据,也可以说是数量大,结构复杂,类型复杂的数据的集合。而从这些数据中获取有价值的信息的的能力,就是大数据技术。
1324 0
《大数据分析原理与实践》——小结
本节书摘来自华章计算机《大数据分析原理与实践》一书中的第3章,小结,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1131 0
|
机器学习/深度学习 算法 大数据
|
存储 算法 数据挖掘
《大数据分析原理与实践》——1.4 大数据分析的过程、技术与难点
本节书摘来自华章计算机《大数据分析原理与实践》一书中的第1章,第1.4节,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
3387 0
|
新零售 搜索推荐 大数据
《大数据分析原理与实践》——1.3 什么是大数据分析
本节书摘来自华章计算机《大数据分析原理与实践》一书中的第1章,第1.3节,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1775 0
|
机器学习/深度学习 大数据
《大数据分析原理与实践》——第2章 大数据分析模型
本节书摘来自华章计算机《大数据分析原理与实践》一书中的第2章,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1479 0
|
监控 大数据
《大数据分析原理与实践》——1.2 哪里有大数据
本节书摘来自华章计算机《大数据分析原理与实践》一书中的第1章,第1.2节,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1238 0
下一篇
无影云桌面